二氧化碳电解用正向偏压双极膜连接处的催化剂层

IF 4.6 Q2 CHEMISTRY, PHYSICAL
Matthieu Dessiex , Vincent Plouzennec , Sophia Haussener , Felix N. Büchi
{"title":"二氧化碳电解用正向偏压双极膜连接处的催化剂层","authors":"Matthieu Dessiex ,&nbsp;Vincent Plouzennec ,&nbsp;Sophia Haussener ,&nbsp;Felix N. Büchi","doi":"10.1016/j.powera.2025.100185","DOIUrl":null,"url":null,"abstract":"<div><div>CO<sub>2</sub> reduction in an electrolysis cell with a forward bias bipolar membrane (BPM) ensures good selectivity and CO<sub>2</sub> utilization, but still suffers from large overvoltages. Recent studies have shown that integrating metal-oxide catalysts at the BPM junction in reverse bias significantly enhances the performance of water electrolyzers. It remains unclear if this method has the same positive effect on CO<sub>2</sub> electrolysis. We studied the performance of a specially designed zero-gap BPM CO<sub>2</sub> electrolyzer operating in forward bias mode, incorporating metal-oxide nanoparticles at the BPM interface. For TiO<sub>2</sub> catalyst, the optimal loading at the BPM junction was between 10 and 30 μg<!--> <!-->cm<sup>-2</sup>, resulting in a 75% higher current density for the same iR-free overpotential. Physical characterization using scanning electron microscopy of the catalyst layers revealed that the optimum performance of the CO<sub>2</sub> electrolyzer correlates with a complete coverage. SiO<sub>2</sub> and IrO<sub>2</sub> metal-oxides were also tested at the BPM junction. SiO<sub>2</sub> showed comparable performance to TiO<sub>2</sub>, whereas IrO<sub>2</sub> improved the current density by approximately 100% at an iR-free overpotential of 0.7 V compared to the pristine BPM.</div></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"35 ","pages":"Article 100185"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalyst layer at the junction of a forward bias bipolar membrane for CO2 electrolysis\",\"authors\":\"Matthieu Dessiex ,&nbsp;Vincent Plouzennec ,&nbsp;Sophia Haussener ,&nbsp;Felix N. Büchi\",\"doi\":\"10.1016/j.powera.2025.100185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>CO<sub>2</sub> reduction in an electrolysis cell with a forward bias bipolar membrane (BPM) ensures good selectivity and CO<sub>2</sub> utilization, but still suffers from large overvoltages. Recent studies have shown that integrating metal-oxide catalysts at the BPM junction in reverse bias significantly enhances the performance of water electrolyzers. It remains unclear if this method has the same positive effect on CO<sub>2</sub> electrolysis. We studied the performance of a specially designed zero-gap BPM CO<sub>2</sub> electrolyzer operating in forward bias mode, incorporating metal-oxide nanoparticles at the BPM interface. For TiO<sub>2</sub> catalyst, the optimal loading at the BPM junction was between 10 and 30 μg<!--> <!-->cm<sup>-2</sup>, resulting in a 75% higher current density for the same iR-free overpotential. Physical characterization using scanning electron microscopy of the catalyst layers revealed that the optimum performance of the CO<sub>2</sub> electrolyzer correlates with a complete coverage. SiO<sub>2</sub> and IrO<sub>2</sub> metal-oxides were also tested at the BPM junction. SiO<sub>2</sub> showed comparable performance to TiO<sub>2</sub>, whereas IrO<sub>2</sub> improved the current density by approximately 100% at an iR-free overpotential of 0.7 V compared to the pristine BPM.</div></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":\"35 \",\"pages\":\"Article 100185\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248525000198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248525000198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用正向偏置双极膜(BPM)的电解池中CO2的减少确保了良好的选择性和CO2利用率,但仍然受到大过电压的影响。最近的研究表明,在反偏置的BPM结处集成金属氧化物催化剂可以显著提高水电解槽的性能。目前尚不清楚这种方法是否对二氧化碳电解有同样的积极影响。我们研究了一种特殊设计的零间隙BPM CO2电解槽的性能,该电解槽在BPM界面处加入金属氧化物纳米粒子,工作在正偏压模式下。对于TiO2催化剂,在BPM连接处的最佳负载为10 ~ 30 μg cm-2,在相同的无ir过电位下,电流密度提高了75%。利用扫描电子显微镜对催化剂层进行的物理表征表明,CO2电解槽的最佳性能与完全覆盖有关。在BPM连接处也测试了SiO2和IrO2金属氧化物。SiO2表现出与TiO2相当的性能,而IrO2在无ir过电位为0.7 V时,与原始BPM相比,电流密度提高了约100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Catalyst layer at the junction of a forward bias bipolar membrane for CO2 electrolysis

Catalyst layer at the junction of a forward bias bipolar membrane for CO2 electrolysis
CO2 reduction in an electrolysis cell with a forward bias bipolar membrane (BPM) ensures good selectivity and CO2 utilization, but still suffers from large overvoltages. Recent studies have shown that integrating metal-oxide catalysts at the BPM junction in reverse bias significantly enhances the performance of water electrolyzers. It remains unclear if this method has the same positive effect on CO2 electrolysis. We studied the performance of a specially designed zero-gap BPM CO2 electrolyzer operating in forward bias mode, incorporating metal-oxide nanoparticles at the BPM interface. For TiO2 catalyst, the optimal loading at the BPM junction was between 10 and 30 μg cm-2, resulting in a 75% higher current density for the same iR-free overpotential. Physical characterization using scanning electron microscopy of the catalyst layers revealed that the optimum performance of the CO2 electrolyzer correlates with a complete coverage. SiO2 and IrO2 metal-oxides were also tested at the BPM junction. SiO2 showed comparable performance to TiO2, whereas IrO2 improved the current density by approximately 100% at an iR-free overpotential of 0.7 V compared to the pristine BPM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信