降压药依那普利特、雷米普利特、曲多拉普利特、奎那普利特和培哚普利特抑制区域特异性血管紧张素i转换酶的分子基础

IF 4.2
Kyle S Gregory, Vinasha Ramasamy, Edward D Sturrock, K Ravi Acharya
{"title":"降压药依那普利特、雷米普利特、曲多拉普利特、奎那普利特和培哚普利特抑制区域特异性血管紧张素i转换酶的分子基础","authors":"Kyle S Gregory, Vinasha Ramasamy, Edward D Sturrock, K Ravi Acharya","doi":"10.1111/febs.70232","DOIUrl":null,"url":null,"abstract":"<p><p>Angiotensin I-converting enzyme (ACE) is a dipeptidyl carboxypeptidase with two homologous catalytic domains [N- and C-domains (nACE and cACE)] that can cleave a range of substrates. cACE primarily cleaves the inactive decapeptide angiotensin I into the potent vasopressor angiotensin II, whereas nACE preferentially cleaves the antifibrotic tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Several ACE inhibitors, which bind to both cACE and nACE active sites, are used clinically for the treatment of hypertension; however, serious side effects are seen in ~ 20-25% of patients due to nonselective inhibition. To improve ACE inhibitor side effect profiles, the design and development of selective inhibitors of cACE or nACE is desirable for the treatment of hypertension or fibrosis. The detailed molecular basis through which the clinically available ACE inhibitors bind and inhibit cACE and nACE was unknown. Thus, in this study, we have characterised the structural and kinetic basis for the interaction between cACE and nACE with enalaprilat, ramiprilat, trandolaprilat, quinaprilat and perindoprilat. The inhibitors display nanomolar inhibition of both domains, with moderate-to-low cACE-selectivity. Trandolaprilat possesses the highest affinity for both nACE and cACE, whereas quinaprilat displayed the largest cACE-selectivity. None of the binding modes of the inhibitors extend beyond the S1-S2' subsites to make use of the unique nACE/cACE residues that have been shown to influence domain selectivity. These findings supplement our understanding of ACE inhibition by the clinically used ACE inhibitors, and this information should be useful in the future design of more domain-selective inhibitors for the treatment of hypertension and cardiovascular diseases.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular basis of domain-specific angiotensin I-converting enzyme inhibition by the antihypertensive drugs enalaprilat, ramiprilat, trandolaprilat, quinaprilat and perindoprilat.\",\"authors\":\"Kyle S Gregory, Vinasha Ramasamy, Edward D Sturrock, K Ravi Acharya\",\"doi\":\"10.1111/febs.70232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Angiotensin I-converting enzyme (ACE) is a dipeptidyl carboxypeptidase with two homologous catalytic domains [N- and C-domains (nACE and cACE)] that can cleave a range of substrates. cACE primarily cleaves the inactive decapeptide angiotensin I into the potent vasopressor angiotensin II, whereas nACE preferentially cleaves the antifibrotic tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Several ACE inhibitors, which bind to both cACE and nACE active sites, are used clinically for the treatment of hypertension; however, serious side effects are seen in ~ 20-25% of patients due to nonselective inhibition. To improve ACE inhibitor side effect profiles, the design and development of selective inhibitors of cACE or nACE is desirable for the treatment of hypertension or fibrosis. The detailed molecular basis through which the clinically available ACE inhibitors bind and inhibit cACE and nACE was unknown. Thus, in this study, we have characterised the structural and kinetic basis for the interaction between cACE and nACE with enalaprilat, ramiprilat, trandolaprilat, quinaprilat and perindoprilat. The inhibitors display nanomolar inhibition of both domains, with moderate-to-low cACE-selectivity. Trandolaprilat possesses the highest affinity for both nACE and cACE, whereas quinaprilat displayed the largest cACE-selectivity. None of the binding modes of the inhibitors extend beyond the S1-S2' subsites to make use of the unique nACE/cACE residues that have been shown to influence domain selectivity. These findings supplement our understanding of ACE inhibition by the clinically used ACE inhibitors, and this information should be useful in the future design of more domain-selective inhibitors for the treatment of hypertension and cardiovascular diseases.</p>\",\"PeriodicalId\":94226,\"journal\":{\"name\":\"The FEBS journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FEBS journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.70232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

血管紧张素i转换酶(Angiotensin I-converting enzyme, ACE)是一种二肽基羧基肽酶,具有两个同源催化结构域[N-和c -结构域(nACE和cACE)],可以切割一系列底物。cACE主要将无活性的十肽血管紧张素I裂解为有效的血管紧张素II,而nACE则优先裂解抗纤维化的四肽n -乙酰-seryl-天冬氨酸-赖氨酸-脯氨酸(Ac-SDKP)。几种与cACE和nACE活性位点结合的ACE抑制剂在临床上用于治疗高血压;然而,由于非选择性抑制,约20-25%的患者出现严重的副作用。为了改善ACE抑制剂的副作用,设计和开发选择性的cACE或nACE抑制剂是治疗高血压或纤维化的理想选择。临床上可用的ACE抑制剂结合和抑制cACE和nACE的详细分子基础尚不清楚。因此,在本研究中,我们表征了cACE和nACE与依那普利特、雷米普利特、曲多拉普利特、奎那普利特和培哚普利特相互作用的结构和动力学基础。抑制剂对这两个结构域都表现出纳摩尔的抑制作用,具有中低cace选择性。Trandolaprilat对nACE和cACE的选择性最高,而quinaprilat对cACE的选择性最高。这些抑制剂的结合模式都没有延伸到S1-S2'亚位之外,以利用已被证明会影响结构域选择性的独特nACE/cACE残基。这些发现补充了我们对临床上使用的ACE抑制剂抑制ACE的理解,这些信息应该有助于未来设计更多的区域选择性抑制剂来治疗高血压和心血管疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular basis of domain-specific angiotensin I-converting enzyme inhibition by the antihypertensive drugs enalaprilat, ramiprilat, trandolaprilat, quinaprilat and perindoprilat.

Angiotensin I-converting enzyme (ACE) is a dipeptidyl carboxypeptidase with two homologous catalytic domains [N- and C-domains (nACE and cACE)] that can cleave a range of substrates. cACE primarily cleaves the inactive decapeptide angiotensin I into the potent vasopressor angiotensin II, whereas nACE preferentially cleaves the antifibrotic tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Several ACE inhibitors, which bind to both cACE and nACE active sites, are used clinically for the treatment of hypertension; however, serious side effects are seen in ~ 20-25% of patients due to nonselective inhibition. To improve ACE inhibitor side effect profiles, the design and development of selective inhibitors of cACE or nACE is desirable for the treatment of hypertension or fibrosis. The detailed molecular basis through which the clinically available ACE inhibitors bind and inhibit cACE and nACE was unknown. Thus, in this study, we have characterised the structural and kinetic basis for the interaction between cACE and nACE with enalaprilat, ramiprilat, trandolaprilat, quinaprilat and perindoprilat. The inhibitors display nanomolar inhibition of both domains, with moderate-to-low cACE-selectivity. Trandolaprilat possesses the highest affinity for both nACE and cACE, whereas quinaprilat displayed the largest cACE-selectivity. None of the binding modes of the inhibitors extend beyond the S1-S2' subsites to make use of the unique nACE/cACE residues that have been shown to influence domain selectivity. These findings supplement our understanding of ACE inhibition by the clinically used ACE inhibitors, and this information should be useful in the future design of more domain-selective inhibitors for the treatment of hypertension and cardiovascular diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信