Jacob Boykin, Nina Zamani, Akash Gunjan and Hoyong Chung
{"title":"多功能生物医学胶粘剂,具有快速粘附的局部药物输送。","authors":"Jacob Boykin, Nina Zamani, Akash Gunjan and Hoyong Chung","doi":"10.1039/D5TB00175G","DOIUrl":null,"url":null,"abstract":"<p >This report presents the synthesis and characterization of a new biomedical adhesive featuring fast-acting adhesion properties for potential application in topical drug delivery to localized areas. This new biomedical adhesive is synthesized through thermally initiated radical polymerization and consists of: (1) a mussel-inspired repeating unit (catechol), which provides strong biomedical adhesion, biocompatibility, and robust skin interactions, and (2) 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), an anionic repeat unit known for its biocompatibility, drug delivery capabilities, and electrostatic interactions. This combination leads to a multifunctional biomedical adhesive that offers fast-acting adhesion to the skin without the need for additional crosslinkers. The resulting copolymer, poly(2-acrylamido-2-methyl-1-propanesulfonic acid<em>-co-N</em>-methacryloyl 3,4-dihydroxyl-<small>L</small>-phenylalanine), further known as poly(AMPS-<em>co</em>-MDOPA), was tested both on PET films and porcine skin to quantify the adhesion properties and compare the setting times of the adhesive. A small amount (30 mg on dry PET surface, 100 mg on wet porcine skin) of adhesive was able to achieve a maximum strength of 105 kPa on a dry PET substrate in a lap shear strength test, and 3.1 kPa on wet porcine skin following only 5 minutes of application time. <small><sup>1</sup></small>H NMR was performed to confirm the chemical structure of the polymer, demonstrating successful synthesis with a repeating unit ratio of 88 : 12 for AMPS : MDOPA. The polymer showed no significant cytotoxicity when exposed to primary human dermal fibroblasts at modest concentrations, proving the polymers’ excellent biocompatibility. In separate tests, the new polymer demonstrated significantly lower cytotoxicity compared to a commercial sunscreen approved for use on human skin. In tests using proliferating human dermal fibroblast cells, the combination of the new poly(AMPS-<em>co</em>-MDOPA) (7.5 mg mL<small><sup>−1</sup></small>) with sodium valproate (2 mM) effectively triggered cell death, demonstrating successful drug delivery. Due to high/fast-acting skin adhesion, soft nature, biocompatibility, and drug efficiency, this new copolymer shows great promise as a biomedical adhesive for skin tissue, offering a comfortable and efficient alternative to drug-containing topical ointments by extending the residence time of the drug at a localized skin site.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 35","pages":" 11032-11045"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/tb/d5tb00175g?page=search","citationCount":"0","resultStr":"{\"title\":\"Multifunctional bio-inspired biomedical adhesive featuring fast-acting adhesion for topical drug delivery†\",\"authors\":\"Jacob Boykin, Nina Zamani, Akash Gunjan and Hoyong Chung\",\"doi\":\"10.1039/D5TB00175G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This report presents the synthesis and characterization of a new biomedical adhesive featuring fast-acting adhesion properties for potential application in topical drug delivery to localized areas. This new biomedical adhesive is synthesized through thermally initiated radical polymerization and consists of: (1) a mussel-inspired repeating unit (catechol), which provides strong biomedical adhesion, biocompatibility, and robust skin interactions, and (2) 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), an anionic repeat unit known for its biocompatibility, drug delivery capabilities, and electrostatic interactions. This combination leads to a multifunctional biomedical adhesive that offers fast-acting adhesion to the skin without the need for additional crosslinkers. The resulting copolymer, poly(2-acrylamido-2-methyl-1-propanesulfonic acid<em>-co-N</em>-methacryloyl 3,4-dihydroxyl-<small>L</small>-phenylalanine), further known as poly(AMPS-<em>co</em>-MDOPA), was tested both on PET films and porcine skin to quantify the adhesion properties and compare the setting times of the adhesive. A small amount (30 mg on dry PET surface, 100 mg on wet porcine skin) of adhesive was able to achieve a maximum strength of 105 kPa on a dry PET substrate in a lap shear strength test, and 3.1 kPa on wet porcine skin following only 5 minutes of application time. <small><sup>1</sup></small>H NMR was performed to confirm the chemical structure of the polymer, demonstrating successful synthesis with a repeating unit ratio of 88 : 12 for AMPS : MDOPA. The polymer showed no significant cytotoxicity when exposed to primary human dermal fibroblasts at modest concentrations, proving the polymers’ excellent biocompatibility. In separate tests, the new polymer demonstrated significantly lower cytotoxicity compared to a commercial sunscreen approved for use on human skin. In tests using proliferating human dermal fibroblast cells, the combination of the new poly(AMPS-<em>co</em>-MDOPA) (7.5 mg mL<small><sup>−1</sup></small>) with sodium valproate (2 mM) effectively triggered cell death, demonstrating successful drug delivery. Due to high/fast-acting skin adhesion, soft nature, biocompatibility, and drug efficiency, this new copolymer shows great promise as a biomedical adhesive for skin tissue, offering a comfortable and efficient alternative to drug-containing topical ointments by extending the residence time of the drug at a localized skin site.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 35\",\"pages\":\" 11032-11045\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/tb/d5tb00175g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00175g\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00175g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Multifunctional bio-inspired biomedical adhesive featuring fast-acting adhesion for topical drug delivery†
This report presents the synthesis and characterization of a new biomedical adhesive featuring fast-acting adhesion properties for potential application in topical drug delivery to localized areas. This new biomedical adhesive is synthesized through thermally initiated radical polymerization and consists of: (1) a mussel-inspired repeating unit (catechol), which provides strong biomedical adhesion, biocompatibility, and robust skin interactions, and (2) 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), an anionic repeat unit known for its biocompatibility, drug delivery capabilities, and electrostatic interactions. This combination leads to a multifunctional biomedical adhesive that offers fast-acting adhesion to the skin without the need for additional crosslinkers. The resulting copolymer, poly(2-acrylamido-2-methyl-1-propanesulfonic acid-co-N-methacryloyl 3,4-dihydroxyl-L-phenylalanine), further known as poly(AMPS-co-MDOPA), was tested both on PET films and porcine skin to quantify the adhesion properties and compare the setting times of the adhesive. A small amount (30 mg on dry PET surface, 100 mg on wet porcine skin) of adhesive was able to achieve a maximum strength of 105 kPa on a dry PET substrate in a lap shear strength test, and 3.1 kPa on wet porcine skin following only 5 minutes of application time. 1H NMR was performed to confirm the chemical structure of the polymer, demonstrating successful synthesis with a repeating unit ratio of 88 : 12 for AMPS : MDOPA. The polymer showed no significant cytotoxicity when exposed to primary human dermal fibroblasts at modest concentrations, proving the polymers’ excellent biocompatibility. In separate tests, the new polymer demonstrated significantly lower cytotoxicity compared to a commercial sunscreen approved for use on human skin. In tests using proliferating human dermal fibroblast cells, the combination of the new poly(AMPS-co-MDOPA) (7.5 mg mL−1) with sodium valproate (2 mM) effectively triggered cell death, demonstrating successful drug delivery. Due to high/fast-acting skin adhesion, soft nature, biocompatibility, and drug efficiency, this new copolymer shows great promise as a biomedical adhesive for skin tissue, offering a comfortable and efficient alternative to drug-containing topical ointments by extending the residence time of the drug at a localized skin site.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices