数字语言测量捕捉人类免疫缺陷病毒患者的情景记忆中断:一项机器学习研究。

IF 2.7 3区 心理学 Q2 CLINICAL NEUROLOGY
Lucas Federico Sterpin, Camilo Avendaño Avello, Jeremías Inchauspe, Gonzalo Nicolás Pérez, Franco J Ferrante, Agustina Birba, Carolina A Gattei, Lorena Abusamra, Bárbara Sampedro, Valeria Abusamra, Lucía Amoruso, Adolfo M García
{"title":"数字语言测量捕捉人类免疫缺陷病毒患者的情景记忆中断:一项机器学习研究。","authors":"Lucas Federico Sterpin, Camilo Avendaño Avello, Jeremías Inchauspe, Gonzalo Nicolás Pérez, Franco J Ferrante, Agustina Birba, Carolina A Gattei, Lorena Abusamra, Bárbara Sampedro, Valeria Abusamra, Lucía Amoruso, Adolfo M García","doi":"10.1080/13854046.2025.2545943","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> Human immunodeficiency virus (HIV) often affects episodic memory. Yet, standard measures of this domain are derived from clinicians' simple counts of recalled and omitted pieces of information, undermining robustness, informativeness, and scalability. Here, we present an automated natural language processing (NLP) approach that tackles such limitations. <b>Methods:</b> We recruited 92 participants (50 people living with HIV and 42 controls), who performed a story retelling task. Using NLP tools, we compared the retellings and the original story in terms of verbosity, semantic acuity, and organizational structure. <b>Results:</b> We found that people living with HIV produced fewer nouns and had poorer semantic acuity and organizational similarity. Moreover, machine learning classifiers robustly differentiated between the two groups. <b>Conclusion:</b> These results suggest that our digital approach can reveal fine-grained episodic memory alterations in people living with HIV, offering an objective, scalable, and cost-effective complement to standard cognitive testing.</p>","PeriodicalId":55250,"journal":{"name":"Clinical Neuropsychologist","volume":" ","pages":"1-25"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital language measures capture episodic memory disruptions in people with human immunodeficiency virus: A machine learning study.\",\"authors\":\"Lucas Federico Sterpin, Camilo Avendaño Avello, Jeremías Inchauspe, Gonzalo Nicolás Pérez, Franco J Ferrante, Agustina Birba, Carolina A Gattei, Lorena Abusamra, Bárbara Sampedro, Valeria Abusamra, Lucía Amoruso, Adolfo M García\",\"doi\":\"10.1080/13854046.2025.2545943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective:</b> Human immunodeficiency virus (HIV) often affects episodic memory. Yet, standard measures of this domain are derived from clinicians' simple counts of recalled and omitted pieces of information, undermining robustness, informativeness, and scalability. Here, we present an automated natural language processing (NLP) approach that tackles such limitations. <b>Methods:</b> We recruited 92 participants (50 people living with HIV and 42 controls), who performed a story retelling task. Using NLP tools, we compared the retellings and the original story in terms of verbosity, semantic acuity, and organizational structure. <b>Results:</b> We found that people living with HIV produced fewer nouns and had poorer semantic acuity and organizational similarity. Moreover, machine learning classifiers robustly differentiated between the two groups. <b>Conclusion:</b> These results suggest that our digital approach can reveal fine-grained episodic memory alterations in people living with HIV, offering an objective, scalable, and cost-effective complement to standard cognitive testing.</p>\",\"PeriodicalId\":55250,\"journal\":{\"name\":\"Clinical Neuropsychologist\",\"volume\":\" \",\"pages\":\"1-25\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Neuropsychologist\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/13854046.2025.2545943\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neuropsychologist","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/13854046.2025.2545943","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:人类免疫缺陷病毒(HIV)经常影响情景记忆。然而,该领域的标准测量来源于临床医生对回忆和遗漏信息的简单计数,这破坏了稳健性、信息性和可扩展性。在这里,我们提出了一种自动自然语言处理(NLP)方法来解决这些限制。方法:我们招募了92名参与者(50名艾滋病毒感染者和42名对照组),他们进行了故事复述任务。使用NLP工具,我们比较了复述和原始故事的冗长程度、语义敏锐度和组织结构。结果:我们发现艾滋病毒感染者产生的名词较少,语义敏锐度和组织相似性较差。此外,机器学习分类器对两组进行了鲁棒性区分。结论:这些结果表明,我们的数字方法可以揭示艾滋病毒感染者的细粒度情景记忆变化,为标准认知测试提供了一种客观、可扩展且具有成本效益的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digital language measures capture episodic memory disruptions in people with human immunodeficiency virus: A machine learning study.

Objective: Human immunodeficiency virus (HIV) often affects episodic memory. Yet, standard measures of this domain are derived from clinicians' simple counts of recalled and omitted pieces of information, undermining robustness, informativeness, and scalability. Here, we present an automated natural language processing (NLP) approach that tackles such limitations. Methods: We recruited 92 participants (50 people living with HIV and 42 controls), who performed a story retelling task. Using NLP tools, we compared the retellings and the original story in terms of verbosity, semantic acuity, and organizational structure. Results: We found that people living with HIV produced fewer nouns and had poorer semantic acuity and organizational similarity. Moreover, machine learning classifiers robustly differentiated between the two groups. Conclusion: These results suggest that our digital approach can reveal fine-grained episodic memory alterations in people living with HIV, offering an objective, scalable, and cost-effective complement to standard cognitive testing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical Neuropsychologist
Clinical Neuropsychologist 医学-临床神经学
CiteScore
8.40
自引率
12.80%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Clinical Neuropsychologist (TCN) serves as the premier forum for (1) state-of-the-art clinically-relevant scientific research, (2) in-depth professional discussions of matters germane to evidence-based practice, and (3) clinical case studies in neuropsychology. Of particular interest are papers that can make definitive statements about a given topic (thereby having implications for the standards of clinical practice) and those with the potential to expand today’s clinical frontiers. Research on all age groups, and on both clinical and normal populations, is considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信