Frederick C K Wong, Man Zhang, Ella Thomson, Linus J Schumacher, Anestis Tsakiridis, James Ashmore, Tong Li, Guillaume Blin, Eleni Karagianni, Nicholas P Mullin, Ian Chambers, Valerie Wilson
{"title":"NANOG在植入后被重新利用以抑制Sox2并开始多能性消失。","authors":"Frederick C K Wong, Man Zhang, Ella Thomson, Linus J Schumacher, Anestis Tsakiridis, James Ashmore, Tong Li, Guillaume Blin, Eleni Karagianni, Nicholas P Mullin, Ian Chambers, Valerie Wilson","doi":"10.1038/s44318-025-00527-9","DOIUrl":null,"url":null,"abstract":"<p><p>Loss of pluripotency is an essential step in post-implantation development that facilitates the emergence of somatic cell identities essential for gastrulation. Before implantation, pluripotent cell identity is governed by a gene regulatory network that includes the key transcription factors SOX2 and NANOG. However, it is unclear how the pluripotency gene regulatory network is dissolved to enable lineage restriction. Here, we show that SOX2 is required for post-implantation pluripotent identity in the mouse, and cells that lose SOX2 expression in the posterior epiblast are no longer pluripotent. Using in vitro and in vivo analyses, we demonstrate anticorrelated expression of NANOG and SOX2 preceding gastrulation, culminating in an early disappearance of pluripotent identity from posterior NANOG<sup>high</sup>/SOX2<sup>low</sup> epiblast. Surprisingly, Sox2 expression is repressed by NANOG and embryos with post-implantation deletion of Nanog maintain posterior SOX2 expression. Our results demonstrate that the distinctive features of post-implantation pluripotency are underpinned by altered functionality of pluripotency transcription factors, ensuring correct spatio-temporal loss of embryonic pluripotency.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"5337-5374"},"PeriodicalIF":8.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12488938/pdf/","citationCount":"0","resultStr":"{\"title\":\"NANOG is repurposed after implantation to repress Sox2 and begin pluripotency extinction.\",\"authors\":\"Frederick C K Wong, Man Zhang, Ella Thomson, Linus J Schumacher, Anestis Tsakiridis, James Ashmore, Tong Li, Guillaume Blin, Eleni Karagianni, Nicholas P Mullin, Ian Chambers, Valerie Wilson\",\"doi\":\"10.1038/s44318-025-00527-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Loss of pluripotency is an essential step in post-implantation development that facilitates the emergence of somatic cell identities essential for gastrulation. Before implantation, pluripotent cell identity is governed by a gene regulatory network that includes the key transcription factors SOX2 and NANOG. However, it is unclear how the pluripotency gene regulatory network is dissolved to enable lineage restriction. Here, we show that SOX2 is required for post-implantation pluripotent identity in the mouse, and cells that lose SOX2 expression in the posterior epiblast are no longer pluripotent. Using in vitro and in vivo analyses, we demonstrate anticorrelated expression of NANOG and SOX2 preceding gastrulation, culminating in an early disappearance of pluripotent identity from posterior NANOG<sup>high</sup>/SOX2<sup>low</sup> epiblast. Surprisingly, Sox2 expression is repressed by NANOG and embryos with post-implantation deletion of Nanog maintain posterior SOX2 expression. Our results demonstrate that the distinctive features of post-implantation pluripotency are underpinned by altered functionality of pluripotency transcription factors, ensuring correct spatio-temporal loss of embryonic pluripotency.</p>\",\"PeriodicalId\":50533,\"journal\":{\"name\":\"EMBO Journal\",\"volume\":\" \",\"pages\":\"5337-5374\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12488938/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-025-00527-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-025-00527-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
NANOG is repurposed after implantation to repress Sox2 and begin pluripotency extinction.
Loss of pluripotency is an essential step in post-implantation development that facilitates the emergence of somatic cell identities essential for gastrulation. Before implantation, pluripotent cell identity is governed by a gene regulatory network that includes the key transcription factors SOX2 and NANOG. However, it is unclear how the pluripotency gene regulatory network is dissolved to enable lineage restriction. Here, we show that SOX2 is required for post-implantation pluripotent identity in the mouse, and cells that lose SOX2 expression in the posterior epiblast are no longer pluripotent. Using in vitro and in vivo analyses, we demonstrate anticorrelated expression of NANOG and SOX2 preceding gastrulation, culminating in an early disappearance of pluripotent identity from posterior NANOGhigh/SOX2low epiblast. Surprisingly, Sox2 expression is repressed by NANOG and embryos with post-implantation deletion of Nanog maintain posterior SOX2 expression. Our results demonstrate that the distinctive features of post-implantation pluripotency are underpinned by altered functionality of pluripotency transcription factors, ensuring correct spatio-temporal loss of embryonic pluripotency.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.