{"title":"三维生物打印与不孕相关的女性生殖系统疾病:目前和未来的应用综述。","authors":"Yanyan Liu, Yuanyuan Ma, Lihong Wang, Congmei Liu, Xianghua Huang, Jingkun Zhang","doi":"10.1007/s13770-025-00754-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Infertility has a significant impact on women, affecting them both mentally and physically. Some of the current infertility-related diseases include intrauterine adhesions, endometriosis, polycystic ovary syndrome, primary ovarian insufficiency, and cancer. While existing treatments can help slow diseases progression and improve fertility for some patients, overall recovery rates remain low. The use of three-dimensional bioprinting (3D bioprinting) is becoming increasingly popular in clinical settings due to its high precision, customizable materials, and mechanical properties. In the state of infertility, its therapeutic potential is becoming more evident.</p><p><strong>Methods: </strong>In this paper, we summarized the current treatment status of female infertility-related diseases, including cervical cancer, ovarian cancer, endometrial cancer, polycystic ovary syndrome, intrauterine adhesions, MRKH syndrome and other diseases, used databases such as PubMed, described the research progress and future development direction of 3D bioprinting in these diseases.</p><p><strong>Results: </strong>3D bioprinting technology could help repair damaged endometrial and ovarian tissue, and was able to create cell-loaded biological scaffolds to help restore the structure and function of affected organs. Furthermore, the development of organoids is opening new ways for research in regenerative medicine. It is expected that 3D bioprinting will not only be able to create organoid structures for research purposes but will also be utilized in clinical settings to effectively address infertility.</p><p><strong>Conclusions: </strong>3D bioprinting is gaining popularity in the clinical field due to its high resolution, adjustable composition, and mechanical qualities. Infertility-related disorders damage women by inflicting a psychological and functional double blow. According to the current research, the application of 3D bioprinting technology to help patients restore fertility function has endless possibilities in the future.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Bioprinting and Infertility-Related Female Reproductive System Diseases: A Review of Current and Future Applications.\",\"authors\":\"Yanyan Liu, Yuanyuan Ma, Lihong Wang, Congmei Liu, Xianghua Huang, Jingkun Zhang\",\"doi\":\"10.1007/s13770-025-00754-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Infertility has a significant impact on women, affecting them both mentally and physically. Some of the current infertility-related diseases include intrauterine adhesions, endometriosis, polycystic ovary syndrome, primary ovarian insufficiency, and cancer. While existing treatments can help slow diseases progression and improve fertility for some patients, overall recovery rates remain low. The use of three-dimensional bioprinting (3D bioprinting) is becoming increasingly popular in clinical settings due to its high precision, customizable materials, and mechanical properties. In the state of infertility, its therapeutic potential is becoming more evident.</p><p><strong>Methods: </strong>In this paper, we summarized the current treatment status of female infertility-related diseases, including cervical cancer, ovarian cancer, endometrial cancer, polycystic ovary syndrome, intrauterine adhesions, MRKH syndrome and other diseases, used databases such as PubMed, described the research progress and future development direction of 3D bioprinting in these diseases.</p><p><strong>Results: </strong>3D bioprinting technology could help repair damaged endometrial and ovarian tissue, and was able to create cell-loaded biological scaffolds to help restore the structure and function of affected organs. Furthermore, the development of organoids is opening new ways for research in regenerative medicine. It is expected that 3D bioprinting will not only be able to create organoid structures for research purposes but will also be utilized in clinical settings to effectively address infertility.</p><p><strong>Conclusions: </strong>3D bioprinting is gaining popularity in the clinical field due to its high resolution, adjustable composition, and mechanical qualities. Infertility-related disorders damage women by inflicting a psychological and functional double blow. According to the current research, the application of 3D bioprinting technology to help patients restore fertility function has endless possibilities in the future.</p>\",\"PeriodicalId\":23126,\"journal\":{\"name\":\"Tissue engineering and regenerative medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering and regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13770-025-00754-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-025-00754-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Three-Dimensional Bioprinting and Infertility-Related Female Reproductive System Diseases: A Review of Current and Future Applications.
Background: Infertility has a significant impact on women, affecting them both mentally and physically. Some of the current infertility-related diseases include intrauterine adhesions, endometriosis, polycystic ovary syndrome, primary ovarian insufficiency, and cancer. While existing treatments can help slow diseases progression and improve fertility for some patients, overall recovery rates remain low. The use of three-dimensional bioprinting (3D bioprinting) is becoming increasingly popular in clinical settings due to its high precision, customizable materials, and mechanical properties. In the state of infertility, its therapeutic potential is becoming more evident.
Methods: In this paper, we summarized the current treatment status of female infertility-related diseases, including cervical cancer, ovarian cancer, endometrial cancer, polycystic ovary syndrome, intrauterine adhesions, MRKH syndrome and other diseases, used databases such as PubMed, described the research progress and future development direction of 3D bioprinting in these diseases.
Results: 3D bioprinting technology could help repair damaged endometrial and ovarian tissue, and was able to create cell-loaded biological scaffolds to help restore the structure and function of affected organs. Furthermore, the development of organoids is opening new ways for research in regenerative medicine. It is expected that 3D bioprinting will not only be able to create organoid structures for research purposes but will also be utilized in clinical settings to effectively address infertility.
Conclusions: 3D bioprinting is gaining popularity in the clinical field due to its high resolution, adjustable composition, and mechanical qualities. Infertility-related disorders damage women by inflicting a psychological and functional double blow. According to the current research, the application of 3D bioprinting technology to help patients restore fertility function has endless possibilities in the future.
期刊介绍:
Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.