Ripal Ranpara, Shobhit K Patel, Om Prakash Kumar, Fahad Ahmed Al-Zahrani
{"title":"在使用联邦学习方法的软件定义网络中用于自主恶意软件检测和防御的可扩展架构。","authors":"Ripal Ranpara, Shobhit K Patel, Om Prakash Kumar, Fahad Ahmed Al-Zahrani","doi":"10.1038/s41598-025-14512-z","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a scalable and autonomous malware detection and defence architecture in software-defined networks (SDNs) that employs federated learning (FL). This architecture combines SDN's centralized management of potentially significant data streams with FL's decentralized, privacy-preserving learning capabilities in a distributed manner adaptable to varying time and space constraints. This enables a flexible, adaptive design and prevention approach in large-scale, heterogeneous networks. Using balanced datasets, we observed detection rates of up to 96% for controlled DDoS and Botnet attacks. However, in more realistic simulations that utilized diverse, real-world imbalanced datasets (such as CICIDS 2017 and UNSW-NB15) and complex scenarios like data exfiltration, the performance dropped to an overall accuracy of 59.50%. This reflects the challenges encountered in real-world deployments. We analyzed performance metrics such as detection accuracy, latency (less than 1 s), throughput recovery (from 300 to 500 Mbps), and communication overhead comparatively. Our architecture minimizes privacy risks by ensuring that raw data never leaves the device; only model updates are shared for aggregation at the global level. While it effectively detects high-impact incursions, there is room for improvement in identifying more subtle threats, which can be addressed with enriched datasets and improved feature engineering. This work offers a robust, privacy-preserving framework for deploying scalable and intelligent malware detection in contemporary network infrastructures.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"30190"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361360/pdf/","citationCount":"0","resultStr":"{\"title\":\"Scalable architecture for autonomous malware detection and defense in software-defined networks using federated learning approaches.\",\"authors\":\"Ripal Ranpara, Shobhit K Patel, Om Prakash Kumar, Fahad Ahmed Al-Zahrani\",\"doi\":\"10.1038/s41598-025-14512-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper proposes a scalable and autonomous malware detection and defence architecture in software-defined networks (SDNs) that employs federated learning (FL). This architecture combines SDN's centralized management of potentially significant data streams with FL's decentralized, privacy-preserving learning capabilities in a distributed manner adaptable to varying time and space constraints. This enables a flexible, adaptive design and prevention approach in large-scale, heterogeneous networks. Using balanced datasets, we observed detection rates of up to 96% for controlled DDoS and Botnet attacks. However, in more realistic simulations that utilized diverse, real-world imbalanced datasets (such as CICIDS 2017 and UNSW-NB15) and complex scenarios like data exfiltration, the performance dropped to an overall accuracy of 59.50%. This reflects the challenges encountered in real-world deployments. We analyzed performance metrics such as detection accuracy, latency (less than 1 s), throughput recovery (from 300 to 500 Mbps), and communication overhead comparatively. Our architecture minimizes privacy risks by ensuring that raw data never leaves the device; only model updates are shared for aggregation at the global level. While it effectively detects high-impact incursions, there is room for improvement in identifying more subtle threats, which can be addressed with enriched datasets and improved feature engineering. This work offers a robust, privacy-preserving framework for deploying scalable and intelligent malware detection in contemporary network infrastructures.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"30190\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361360/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-14512-z\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-14512-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Scalable architecture for autonomous malware detection and defense in software-defined networks using federated learning approaches.
This paper proposes a scalable and autonomous malware detection and defence architecture in software-defined networks (SDNs) that employs federated learning (FL). This architecture combines SDN's centralized management of potentially significant data streams with FL's decentralized, privacy-preserving learning capabilities in a distributed manner adaptable to varying time and space constraints. This enables a flexible, adaptive design and prevention approach in large-scale, heterogeneous networks. Using balanced datasets, we observed detection rates of up to 96% for controlled DDoS and Botnet attacks. However, in more realistic simulations that utilized diverse, real-world imbalanced datasets (such as CICIDS 2017 and UNSW-NB15) and complex scenarios like data exfiltration, the performance dropped to an overall accuracy of 59.50%. This reflects the challenges encountered in real-world deployments. We analyzed performance metrics such as detection accuracy, latency (less than 1 s), throughput recovery (from 300 to 500 Mbps), and communication overhead comparatively. Our architecture minimizes privacy risks by ensuring that raw data never leaves the device; only model updates are shared for aggregation at the global level. While it effectively detects high-impact incursions, there is room for improvement in identifying more subtle threats, which can be addressed with enriched datasets and improved feature engineering. This work offers a robust, privacy-preserving framework for deploying scalable and intelligent malware detection in contemporary network infrastructures.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.