Yahia Said, Oumaima Saidani, Ali Delham Algarni, Mohammad H Algarni, Ayman Flah
{"title":"基于遥感影像的土地覆被土地利用语义分割的轻量级多尺度信息聚合网络。","authors":"Yahia Said, Oumaima Saidani, Ali Delham Algarni, Mohammad H Algarni, Ayman Flah","doi":"10.1038/s41598-025-07908-4","DOIUrl":null,"url":null,"abstract":"<p><p>Land Cover and Land Use (LCLU) segmentation plays a fundamental role in various remote sensing applications, including environmental monitoring, urban planning, and disaster management. Traditional models often face limitations in real-time processing and deployment on resource-constrained devices due to their high computational requirements. This paper presents a lightweight neural network designed to address these challenges by integrating dense dilated convolutions with pyramid depthwise convolutions for multiscale feature extraction. The proposed encoder-decoder architecture utilizes dense connections to aggregate spatial and contextual information across different resolutions, enhancing segmentation accuracy while minimizing computational overhead. The model's performance was rigorously evaluated using the NITRDrone and UDD6 datasets, demonstrating a segmentation accuracy of 94.8%, with a significantly reduced parameter count compared to state-of-the-art methods. The compact design of the network facilitates its implementation on low-power devices, enabling real-time LCLU analysis across diverse environmental conditions. This work underscores the potential of lightweight neural networks to advance remote sensing image processing, offering scalable and efficient solutions for practical applications in geospatial analysis.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"30265"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361376/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lightweight multiscale information aggregation network for land cover land use semantic segmentation from remote sensing images.\",\"authors\":\"Yahia Said, Oumaima Saidani, Ali Delham Algarni, Mohammad H Algarni, Ayman Flah\",\"doi\":\"10.1038/s41598-025-07908-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Land Cover and Land Use (LCLU) segmentation plays a fundamental role in various remote sensing applications, including environmental monitoring, urban planning, and disaster management. Traditional models often face limitations in real-time processing and deployment on resource-constrained devices due to their high computational requirements. This paper presents a lightweight neural network designed to address these challenges by integrating dense dilated convolutions with pyramid depthwise convolutions for multiscale feature extraction. The proposed encoder-decoder architecture utilizes dense connections to aggregate spatial and contextual information across different resolutions, enhancing segmentation accuracy while minimizing computational overhead. The model's performance was rigorously evaluated using the NITRDrone and UDD6 datasets, demonstrating a segmentation accuracy of 94.8%, with a significantly reduced parameter count compared to state-of-the-art methods. The compact design of the network facilitates its implementation on low-power devices, enabling real-time LCLU analysis across diverse environmental conditions. This work underscores the potential of lightweight neural networks to advance remote sensing image processing, offering scalable and efficient solutions for practical applications in geospatial analysis.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"30265\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361376/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-07908-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-07908-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Lightweight multiscale information aggregation network for land cover land use semantic segmentation from remote sensing images.
Land Cover and Land Use (LCLU) segmentation plays a fundamental role in various remote sensing applications, including environmental monitoring, urban planning, and disaster management. Traditional models often face limitations in real-time processing and deployment on resource-constrained devices due to their high computational requirements. This paper presents a lightweight neural network designed to address these challenges by integrating dense dilated convolutions with pyramid depthwise convolutions for multiscale feature extraction. The proposed encoder-decoder architecture utilizes dense connections to aggregate spatial and contextual information across different resolutions, enhancing segmentation accuracy while minimizing computational overhead. The model's performance was rigorously evaluated using the NITRDrone and UDD6 datasets, demonstrating a segmentation accuracy of 94.8%, with a significantly reduced parameter count compared to state-of-the-art methods. The compact design of the network facilitates its implementation on low-power devices, enabling real-time LCLU analysis across diverse environmental conditions. This work underscores the potential of lightweight neural networks to advance remote sensing image processing, offering scalable and efficient solutions for practical applications in geospatial analysis.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.