Preeti Vats, Rohit Kumar, Raghvendra Kumar, Jai K Kaushik, Ashok K Mohanty, Sudarshan Kumar
{"title":"利用基于CRISPR-CAS9的基因编辑在水牛乳腺上皮细胞中破译MFGE8在泌乳中的作用","authors":"Preeti Vats, Rohit Kumar, Raghvendra Kumar, Jai K Kaushik, Ashok K Mohanty, Sudarshan Kumar","doi":"10.1038/s41598-025-00155-7","DOIUrl":null,"url":null,"abstract":"<p><p>Milk fat globule EGF factor 8 (MFGE8) is a glycoprotein which plays a crucial role in mammary gland remodeling. Our group previously identified MFGE8 as a marker associated with high milk yielding cows. Here, we generated MFGE8 knock-out buffalo mammary epithelial cells (BuMEC) via CRISPR-cas9 technology to decipher its role in lactation. gRNA3 reduced MFGE8 expression with good efficiency which was confirmed at transcriptomic and proteomic level and the stable knock-out cells obtained were named mfge8-/-/gRNA3. The amplicon sequencing of the edited region using next generation sequencing (NGS) showed that 54% of total reads showed indels, 3-4 bp upstream to PAM site in 2nd exon. A total 4282 proteins were identified when proteome level changes were examined and 178 were found to be differentially expressed above and below a threshold of ≥ 1.5 and ≤ 0.6. Major DEPs were found to be associated with regulation of hydrolase activity, endopeptidase activity and cytoskeletal organization and some DEPs including FABP3, FABP4, FABP5, KNG1, MT2A, CD82, SLC7A1 and SERPINH1 belonged to genes associated with milk synthesis. To the best of our knowledge, this is the first study which provides a comprehensive proteome profile of MFGE8 knockout BuMEC and explores downstream effects of disruption of MFGE8 gene.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"30194"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361407/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deciphering the role of MFGE8 in lactation using CRISPR-CAS9 based gene editing in Buffalo mammary epithelial cells.\",\"authors\":\"Preeti Vats, Rohit Kumar, Raghvendra Kumar, Jai K Kaushik, Ashok K Mohanty, Sudarshan Kumar\",\"doi\":\"10.1038/s41598-025-00155-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Milk fat globule EGF factor 8 (MFGE8) is a glycoprotein which plays a crucial role in mammary gland remodeling. Our group previously identified MFGE8 as a marker associated with high milk yielding cows. Here, we generated MFGE8 knock-out buffalo mammary epithelial cells (BuMEC) via CRISPR-cas9 technology to decipher its role in lactation. gRNA3 reduced MFGE8 expression with good efficiency which was confirmed at transcriptomic and proteomic level and the stable knock-out cells obtained were named mfge8-/-/gRNA3. The amplicon sequencing of the edited region using next generation sequencing (NGS) showed that 54% of total reads showed indels, 3-4 bp upstream to PAM site in 2nd exon. A total 4282 proteins were identified when proteome level changes were examined and 178 were found to be differentially expressed above and below a threshold of ≥ 1.5 and ≤ 0.6. Major DEPs were found to be associated with regulation of hydrolase activity, endopeptidase activity and cytoskeletal organization and some DEPs including FABP3, FABP4, FABP5, KNG1, MT2A, CD82, SLC7A1 and SERPINH1 belonged to genes associated with milk synthesis. To the best of our knowledge, this is the first study which provides a comprehensive proteome profile of MFGE8 knockout BuMEC and explores downstream effects of disruption of MFGE8 gene.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"30194\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361407/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-00155-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-00155-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Deciphering the role of MFGE8 in lactation using CRISPR-CAS9 based gene editing in Buffalo mammary epithelial cells.
Milk fat globule EGF factor 8 (MFGE8) is a glycoprotein which plays a crucial role in mammary gland remodeling. Our group previously identified MFGE8 as a marker associated with high milk yielding cows. Here, we generated MFGE8 knock-out buffalo mammary epithelial cells (BuMEC) via CRISPR-cas9 technology to decipher its role in lactation. gRNA3 reduced MFGE8 expression with good efficiency which was confirmed at transcriptomic and proteomic level and the stable knock-out cells obtained were named mfge8-/-/gRNA3. The amplicon sequencing of the edited region using next generation sequencing (NGS) showed that 54% of total reads showed indels, 3-4 bp upstream to PAM site in 2nd exon. A total 4282 proteins were identified when proteome level changes were examined and 178 were found to be differentially expressed above and below a threshold of ≥ 1.5 and ≤ 0.6. Major DEPs were found to be associated with regulation of hydrolase activity, endopeptidase activity and cytoskeletal organization and some DEPs including FABP3, FABP4, FABP5, KNG1, MT2A, CD82, SLC7A1 and SERPINH1 belonged to genes associated with milk synthesis. To the best of our knowledge, this is the first study which provides a comprehensive proteome profile of MFGE8 knockout BuMEC and explores downstream effects of disruption of MFGE8 gene.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.