高质量负极用锂离子固体导体的操作中子成像梯度设计。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Tongtai Ji, Yuxuan Zhang, James Torres, Aleksandar S Mijailovic, Ya Tang, Xianhui Zhao, Jean-Christophe Bilheux, Jiwei Wang, Brian W Sheldon, Oluwafemi Oyedeji, Hongli Zhu
{"title":"高质量负极用锂离子固体导体的操作中子成像梯度设计。","authors":"Tongtai Ji, Yuxuan Zhang, James Torres, Aleksandar S Mijailovic, Ya Tang, Xianhui Zhao, Jean-Christophe Bilheux, Jiwei Wang, Brian W Sheldon, Oluwafemi Oyedeji, Hongli Zhu","doi":"10.1038/s41467-025-62518-y","DOIUrl":null,"url":null,"abstract":"<p><p>High-mass-loading cathodes are crucial for achieving high energy density in all-solid-state batteries from the lab scale to industry. However, as mass-loading increases, electrochemical performance is significantly compromised due to sluggish kinetics. In this work, operando neutron imaging is deployed on a high-mass-loading NMC 811 cathode of 33 mg/cm<sup>2</sup> (5.0 mAh/cm<sup>2</sup>) and directly visualizes the lithiation prioritization of the cathode active material (CAM) from the solid electrolyte membrane side to the current collector side. In addition to the tortuosity, another key limitation on ion transfer in the cathode arises from the mismatch between the uniform distribution of the solid electrolyte (catholyte) in the conventional composite cathode and the non-uniform Li<sup>+</sup> flux generated by the faradaic reaction of CAMs. Therefore, we engineer a gradient in the catholyte concentration to match the Li<sup>+</sup> flux distribution as a means of eliminating the ion transfer obstacle. This approach demonstrates enhanced rate performance, even with high-mass-loading cathodes. A LiCoO<sub>2</sub> composite cathode with 100 mg/cm<sup>2</sup> high-mass-loading exhibits an areal capacity of 10.4 mAh/cm<sup>2</sup> at a current density of 2.25 mA/cm<sup>2</sup>. This work provides insight into the ion-transport limitation in thick cathodes and demonstrates an effective gradient design to overcome the kinetic barrier and achieve high battery performance.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"7667"},"PeriodicalIF":15.7000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361399/pdf/","citationCount":"0","resultStr":"{\"title\":\"Operando neutron imaging-guided gradient design of Li-ion solid conductor for high-mass-loading cathodes.\",\"authors\":\"Tongtai Ji, Yuxuan Zhang, James Torres, Aleksandar S Mijailovic, Ya Tang, Xianhui Zhao, Jean-Christophe Bilheux, Jiwei Wang, Brian W Sheldon, Oluwafemi Oyedeji, Hongli Zhu\",\"doi\":\"10.1038/s41467-025-62518-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-mass-loading cathodes are crucial for achieving high energy density in all-solid-state batteries from the lab scale to industry. However, as mass-loading increases, electrochemical performance is significantly compromised due to sluggish kinetics. In this work, operando neutron imaging is deployed on a high-mass-loading NMC 811 cathode of 33 mg/cm<sup>2</sup> (5.0 mAh/cm<sup>2</sup>) and directly visualizes the lithiation prioritization of the cathode active material (CAM) from the solid electrolyte membrane side to the current collector side. In addition to the tortuosity, another key limitation on ion transfer in the cathode arises from the mismatch between the uniform distribution of the solid electrolyte (catholyte) in the conventional composite cathode and the non-uniform Li<sup>+</sup> flux generated by the faradaic reaction of CAMs. Therefore, we engineer a gradient in the catholyte concentration to match the Li<sup>+</sup> flux distribution as a means of eliminating the ion transfer obstacle. This approach demonstrates enhanced rate performance, even with high-mass-loading cathodes. A LiCoO<sub>2</sub> composite cathode with 100 mg/cm<sup>2</sup> high-mass-loading exhibits an areal capacity of 10.4 mAh/cm<sup>2</sup> at a current density of 2.25 mA/cm<sup>2</sup>. This work provides insight into the ion-transport limitation in thick cathodes and demonstrates an effective gradient design to overcome the kinetic barrier and achieve high battery performance.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"7667\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361399/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62518-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62518-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

从实验室规模到工业规模,高质量负载阴极对于实现全固态电池的高能量密度至关重要。然而,随着质量载荷的增加,电化学性能由于动力学的缓慢而显著降低。在这项工作中,在33 mg/cm2 (5.0 mAh/cm2)的高质量负载NMC 811阴极上部署了operando中子成像,并直接显示了阴极活性材料(CAM)从固体电解质膜侧到集流器侧的锂化优先级。除了扭曲外,阴极中离子转移的另一个关键限制来自于传统复合阴极中固体电解质(阴极)的均匀分布与CAMs法拉第反应产生的不均匀Li+通量之间的不匹配。因此,我们设计了阴极电解质浓度的梯度,以匹配Li+通量分布,作为消除离子转移障碍的一种手段。即使使用高质量负载阴极,这种方法也能提高速率性能。高质量负载为100 mg/cm2的LiCoO2复合阴极在电流密度为2.25 mA/cm2时的面容量为10.4 mAh/cm2。这项工作提供了对厚阴极中离子传输限制的见解,并展示了一种有效的梯度设计来克服动力学屏障并实现高电池性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operando neutron imaging-guided gradient design of Li-ion solid conductor for high-mass-loading cathodes.

High-mass-loading cathodes are crucial for achieving high energy density in all-solid-state batteries from the lab scale to industry. However, as mass-loading increases, electrochemical performance is significantly compromised due to sluggish kinetics. In this work, operando neutron imaging is deployed on a high-mass-loading NMC 811 cathode of 33 mg/cm2 (5.0 mAh/cm2) and directly visualizes the lithiation prioritization of the cathode active material (CAM) from the solid electrolyte membrane side to the current collector side. In addition to the tortuosity, another key limitation on ion transfer in the cathode arises from the mismatch between the uniform distribution of the solid electrolyte (catholyte) in the conventional composite cathode and the non-uniform Li+ flux generated by the faradaic reaction of CAMs. Therefore, we engineer a gradient in the catholyte concentration to match the Li+ flux distribution as a means of eliminating the ion transfer obstacle. This approach demonstrates enhanced rate performance, even with high-mass-loading cathodes. A LiCoO2 composite cathode with 100 mg/cm2 high-mass-loading exhibits an areal capacity of 10.4 mAh/cm2 at a current density of 2.25 mA/cm2. This work provides insight into the ion-transport limitation in thick cathodes and demonstrates an effective gradient design to overcome the kinetic barrier and achieve high battery performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信