Tongtai Ji, Yuxuan Zhang, James Torres, Aleksandar S Mijailovic, Ya Tang, Xianhui Zhao, Jean-Christophe Bilheux, Jiwei Wang, Brian W Sheldon, Oluwafemi Oyedeji, Hongli Zhu
{"title":"高质量负极用锂离子固体导体的操作中子成像梯度设计。","authors":"Tongtai Ji, Yuxuan Zhang, James Torres, Aleksandar S Mijailovic, Ya Tang, Xianhui Zhao, Jean-Christophe Bilheux, Jiwei Wang, Brian W Sheldon, Oluwafemi Oyedeji, Hongli Zhu","doi":"10.1038/s41467-025-62518-y","DOIUrl":null,"url":null,"abstract":"<p><p>High-mass-loading cathodes are crucial for achieving high energy density in all-solid-state batteries from the lab scale to industry. However, as mass-loading increases, electrochemical performance is significantly compromised due to sluggish kinetics. In this work, operando neutron imaging is deployed on a high-mass-loading NMC 811 cathode of 33 mg/cm<sup>2</sup> (5.0 mAh/cm<sup>2</sup>) and directly visualizes the lithiation prioritization of the cathode active material (CAM) from the solid electrolyte membrane side to the current collector side. In addition to the tortuosity, another key limitation on ion transfer in the cathode arises from the mismatch between the uniform distribution of the solid electrolyte (catholyte) in the conventional composite cathode and the non-uniform Li<sup>+</sup> flux generated by the faradaic reaction of CAMs. Therefore, we engineer a gradient in the catholyte concentration to match the Li<sup>+</sup> flux distribution as a means of eliminating the ion transfer obstacle. This approach demonstrates enhanced rate performance, even with high-mass-loading cathodes. A LiCoO<sub>2</sub> composite cathode with 100 mg/cm<sup>2</sup> high-mass-loading exhibits an areal capacity of 10.4 mAh/cm<sup>2</sup> at a current density of 2.25 mA/cm<sup>2</sup>. This work provides insight into the ion-transport limitation in thick cathodes and demonstrates an effective gradient design to overcome the kinetic barrier and achieve high battery performance.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"7667"},"PeriodicalIF":15.7000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361399/pdf/","citationCount":"0","resultStr":"{\"title\":\"Operando neutron imaging-guided gradient design of Li-ion solid conductor for high-mass-loading cathodes.\",\"authors\":\"Tongtai Ji, Yuxuan Zhang, James Torres, Aleksandar S Mijailovic, Ya Tang, Xianhui Zhao, Jean-Christophe Bilheux, Jiwei Wang, Brian W Sheldon, Oluwafemi Oyedeji, Hongli Zhu\",\"doi\":\"10.1038/s41467-025-62518-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-mass-loading cathodes are crucial for achieving high energy density in all-solid-state batteries from the lab scale to industry. However, as mass-loading increases, electrochemical performance is significantly compromised due to sluggish kinetics. In this work, operando neutron imaging is deployed on a high-mass-loading NMC 811 cathode of 33 mg/cm<sup>2</sup> (5.0 mAh/cm<sup>2</sup>) and directly visualizes the lithiation prioritization of the cathode active material (CAM) from the solid electrolyte membrane side to the current collector side. In addition to the tortuosity, another key limitation on ion transfer in the cathode arises from the mismatch between the uniform distribution of the solid electrolyte (catholyte) in the conventional composite cathode and the non-uniform Li<sup>+</sup> flux generated by the faradaic reaction of CAMs. Therefore, we engineer a gradient in the catholyte concentration to match the Li<sup>+</sup> flux distribution as a means of eliminating the ion transfer obstacle. This approach demonstrates enhanced rate performance, even with high-mass-loading cathodes. A LiCoO<sub>2</sub> composite cathode with 100 mg/cm<sup>2</sup> high-mass-loading exhibits an areal capacity of 10.4 mAh/cm<sup>2</sup> at a current density of 2.25 mA/cm<sup>2</sup>. This work provides insight into the ion-transport limitation in thick cathodes and demonstrates an effective gradient design to overcome the kinetic barrier and achieve high battery performance.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"7667\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361399/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62518-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62518-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Operando neutron imaging-guided gradient design of Li-ion solid conductor for high-mass-loading cathodes.
High-mass-loading cathodes are crucial for achieving high energy density in all-solid-state batteries from the lab scale to industry. However, as mass-loading increases, electrochemical performance is significantly compromised due to sluggish kinetics. In this work, operando neutron imaging is deployed on a high-mass-loading NMC 811 cathode of 33 mg/cm2 (5.0 mAh/cm2) and directly visualizes the lithiation prioritization of the cathode active material (CAM) from the solid electrolyte membrane side to the current collector side. In addition to the tortuosity, another key limitation on ion transfer in the cathode arises from the mismatch between the uniform distribution of the solid electrolyte (catholyte) in the conventional composite cathode and the non-uniform Li+ flux generated by the faradaic reaction of CAMs. Therefore, we engineer a gradient in the catholyte concentration to match the Li+ flux distribution as a means of eliminating the ion transfer obstacle. This approach demonstrates enhanced rate performance, even with high-mass-loading cathodes. A LiCoO2 composite cathode with 100 mg/cm2 high-mass-loading exhibits an areal capacity of 10.4 mAh/cm2 at a current density of 2.25 mA/cm2. This work provides insight into the ion-transport limitation in thick cathodes and demonstrates an effective gradient design to overcome the kinetic barrier and achieve high battery performance.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.