sr掺杂La3Ni2O7薄膜的超导性。

IF 38.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Bo Hao, Maosen Wang, Wenjie Sun, Yang Yang, Zhangwen Mao, Shengjun Yan, Haoying Sun, Hongyi Zhang, Lu Han, Zhengbin Gu, Jian Zhou, Dianxiang Ji, Yuefeng Nie
{"title":"sr掺杂La3Ni2O7薄膜的超导性。","authors":"Bo Hao, Maosen Wang, Wenjie Sun, Yang Yang, Zhangwen Mao, Shengjun Yan, Haoying Sun, Hongyi Zhang, Lu Han, Zhengbin Gu, Jian Zhou, Dianxiang Ji, Yuefeng Nie","doi":"10.1038/s41563-025-02327-2","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have demonstrated ambient pressure superconductivity in compressively strained La<sub>3</sub>Ni<sub>2</sub>O<sub>7</sub> thin films, yet the phase diagram of heterovalent doping-critical for advancing the field-remains underexplored. Here we report superconductivity in Sr<sup>2+</sup>-doped La<sub>3-x</sub>Sr<sub>x</sub>Ni<sub>2</sub>O<sub>7</sub> films. The superconducting transition temperature (T<sub>c</sub>) follows an incomplete dome-like profile, maintaining similar T<sub>c</sub> values across a wide doping range (0 ≤ x ≤ 0.21) before diminishing near x ≈ 0.38. Optimally doped films achieve a T<sub>c</sub> value of ~42 K, with a high critical current (J<sub>c</sub> > 1.4 kA cm<sup>-2</sup> at 2 K) and upper critical fields (μ<sub>0</sub>H<sub>c,∥</sub>(0) = 83.7 T, μ<sub>0</sub>H<sub>c,⟂</sub>(0) = 110.3 T). Scanning transmission electron microscopy reveals that oxygen vacancies predominantly occupy planar NiO<sub>2</sub> sites-unlike apical-site vacancies in bulk samples-due to compressive strain. Additionally, the elongated out-of-plane Ni-O bonds, exceeding those in pressurized bulk samples by 4%, likely weaken the interlayer <math> <msub><mrow><mi>d</mi></mrow> <mrow> <msup><mrow><mi>z</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> </msub> </math> coupling and contribute to the reduced T<sub>c</sub> in strained films.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":" ","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superconductivity in Sr-doped La<sub>3</sub>Ni<sub>2</sub>O<sub>7</sub> thin films.\",\"authors\":\"Bo Hao, Maosen Wang, Wenjie Sun, Yang Yang, Zhangwen Mao, Shengjun Yan, Haoying Sun, Hongyi Zhang, Lu Han, Zhengbin Gu, Jian Zhou, Dianxiang Ji, Yuefeng Nie\",\"doi\":\"10.1038/s41563-025-02327-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent studies have demonstrated ambient pressure superconductivity in compressively strained La<sub>3</sub>Ni<sub>2</sub>O<sub>7</sub> thin films, yet the phase diagram of heterovalent doping-critical for advancing the field-remains underexplored. Here we report superconductivity in Sr<sup>2+</sup>-doped La<sub>3-x</sub>Sr<sub>x</sub>Ni<sub>2</sub>O<sub>7</sub> films. The superconducting transition temperature (T<sub>c</sub>) follows an incomplete dome-like profile, maintaining similar T<sub>c</sub> values across a wide doping range (0 ≤ x ≤ 0.21) before diminishing near x ≈ 0.38. Optimally doped films achieve a T<sub>c</sub> value of ~42 K, with a high critical current (J<sub>c</sub> > 1.4 kA cm<sup>-2</sup> at 2 K) and upper critical fields (μ<sub>0</sub>H<sub>c,∥</sub>(0) = 83.7 T, μ<sub>0</sub>H<sub>c,⟂</sub>(0) = 110.3 T). Scanning transmission electron microscopy reveals that oxygen vacancies predominantly occupy planar NiO<sub>2</sub> sites-unlike apical-site vacancies in bulk samples-due to compressive strain. Additionally, the elongated out-of-plane Ni-O bonds, exceeding those in pressurized bulk samples by 4%, likely weaken the interlayer <math> <msub><mrow><mi>d</mi></mrow> <mrow> <msup><mrow><mi>z</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> </msub> </math> coupling and contribute to the reduced T<sub>c</sub> in strained films.</p>\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":38.5000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41563-025-02327-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02327-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究已经证明了压缩应变La3Ni2O7薄膜的环境压力超导性,但是对于推进该领域至关重要的异价掺杂的相图仍未得到充分的探索。本文报道了Sr2+掺杂La3-xSrxNi2O7薄膜的超导性。超导转变温度(Tc)遵循不完全的圆顶型曲线,在很宽的掺杂范围内(0≤x≤0.21)保持相似的Tc值,然后在x≈0.38附近减小。最佳掺杂膜的Tc值为~42 K,具有较高的临界电流(2 K时Jc >为1.4 kA cm-2)和较高的临界场(μ0Hc,∥(0)= 83.7 T, μ0Hc,⟂(0)= 110.3 T)。扫描透射电镜显示,由于压缩应变,氧空位主要占据平面NiO2位点,而不像大块样品中的顶位空位。此外,拉长的面外Ni-O键比受压体样品中的Ni-O键多4%,可能会削弱层间的dz2耦合,并导致应变膜中Tc的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Superconductivity in Sr-doped La<sub>3</sub>Ni<sub>2</sub>O<sub>7</sub> thin films.

Superconductivity in Sr-doped La3Ni2O7 thin films.

Recent studies have demonstrated ambient pressure superconductivity in compressively strained La3Ni2O7 thin films, yet the phase diagram of heterovalent doping-critical for advancing the field-remains underexplored. Here we report superconductivity in Sr2+-doped La3-xSrxNi2O7 films. The superconducting transition temperature (Tc) follows an incomplete dome-like profile, maintaining similar Tc values across a wide doping range (0 ≤ x ≤ 0.21) before diminishing near x ≈ 0.38. Optimally doped films achieve a Tc value of ~42 K, with a high critical current (Jc > 1.4 kA cm-2 at 2 K) and upper critical fields (μ0Hc,∥(0) = 83.7 T, μ0Hc,⟂(0) = 110.3 T). Scanning transmission electron microscopy reveals that oxygen vacancies predominantly occupy planar NiO2 sites-unlike apical-site vacancies in bulk samples-due to compressive strain. Additionally, the elongated out-of-plane Ni-O bonds, exceeding those in pressurized bulk samples by 4%, likely weaken the interlayer d z 2 coupling and contribute to the reduced Tc in strained films.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信