{"title":"用于加速伤口愈合的工程丝绸敷料:生物相容性和功效研究。","authors":"Rucha Deshpande, Lakshmi R Pillai, Raeesa Sayyad, Swati Shukla, Anuya Nisal, Premnath Venugopalan","doi":"10.1002/mabi.202500323","DOIUrl":null,"url":null,"abstract":"<p><p>Advanced wound care dressings are essential for improving clinical outcomes. The present study investigates the wound management potential of a unique dressing fabricated from silk proteins. The dressing was characterized for its physical and structural properties, including surface texture, porosity, fluid absorption capacity, and moisture vapor transmission rate. These parameters have been found to be critical for optimal wound healing. In vivo full thickness wound healing studies in a rat model validated the efficacy of the Silk-dressing compared to conventional cotton gauze and commercial polyurethane foam dressings. Histopathological analysis confirmed improved re-epithelialization, collagen deposition, angiogenesis, and formation of secondary follicles. Key advantages of Silk-dressing included non-adherence, absorption of exudate, maintenance of optimal moisture at wound site and accelerated wound closure. Biocompatibility studies were also conducted in accordance with ISO 10993 guidelines, demonstrating no cytotoxicity, irritation, sensitization, or pyrogenicity. These findings highlight the potential of this uniquely designed Silk-dressing as a superior alternative for wound management, with a potential to improve clinical outcomes.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e00323"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineered Silk-Dressing for Accelerated Wound Healing: Biocompatibility and Efficacy Studies.\",\"authors\":\"Rucha Deshpande, Lakshmi R Pillai, Raeesa Sayyad, Swati Shukla, Anuya Nisal, Premnath Venugopalan\",\"doi\":\"10.1002/mabi.202500323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advanced wound care dressings are essential for improving clinical outcomes. The present study investigates the wound management potential of a unique dressing fabricated from silk proteins. The dressing was characterized for its physical and structural properties, including surface texture, porosity, fluid absorption capacity, and moisture vapor transmission rate. These parameters have been found to be critical for optimal wound healing. In vivo full thickness wound healing studies in a rat model validated the efficacy of the Silk-dressing compared to conventional cotton gauze and commercial polyurethane foam dressings. Histopathological analysis confirmed improved re-epithelialization, collagen deposition, angiogenesis, and formation of secondary follicles. Key advantages of Silk-dressing included non-adherence, absorption of exudate, maintenance of optimal moisture at wound site and accelerated wound closure. Biocompatibility studies were also conducted in accordance with ISO 10993 guidelines, demonstrating no cytotoxicity, irritation, sensitization, or pyrogenicity. These findings highlight the potential of this uniquely designed Silk-dressing as a superior alternative for wound management, with a potential to improve clinical outcomes.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":\" \",\"pages\":\"e00323\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/mabi.202500323\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202500323","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Engineered Silk-Dressing for Accelerated Wound Healing: Biocompatibility and Efficacy Studies.
Advanced wound care dressings are essential for improving clinical outcomes. The present study investigates the wound management potential of a unique dressing fabricated from silk proteins. The dressing was characterized for its physical and structural properties, including surface texture, porosity, fluid absorption capacity, and moisture vapor transmission rate. These parameters have been found to be critical for optimal wound healing. In vivo full thickness wound healing studies in a rat model validated the efficacy of the Silk-dressing compared to conventional cotton gauze and commercial polyurethane foam dressings. Histopathological analysis confirmed improved re-epithelialization, collagen deposition, angiogenesis, and formation of secondary follicles. Key advantages of Silk-dressing included non-adherence, absorption of exudate, maintenance of optimal moisture at wound site and accelerated wound closure. Biocompatibility studies were also conducted in accordance with ISO 10993 guidelines, demonstrating no cytotoxicity, irritation, sensitization, or pyrogenicity. These findings highlight the potential of this uniquely designed Silk-dressing as a superior alternative for wound management, with a potential to improve clinical outcomes.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.