致病性ZNF319变异破坏核定位和转录调控,导致一种新型常染色体隐性白质营养不良。

IF 2.5 3区 生物学 Q2 GENETICS & HEREDITY
S Rehan Ahmad, Md Zeyaullah, Yousef Zahrani, Abdelrhman A G Altijani, Adam Dawria, Ahmed Salih
{"title":"致病性ZNF319变异破坏核定位和转录调控,导致一种新型常染色体隐性白质营养不良。","authors":"S Rehan Ahmad, Md Zeyaullah, Yousef Zahrani, Abdelrhman A G Altijani, Adam Dawria, Ahmed Salih","doi":"10.1038/s10038-025-01386-2","DOIUrl":null,"url":null,"abstract":"<p><p>Leukodystrophies are inherited disorders characterized by progressive degeneration of white matter in the central nervous system. Here, we investigate a previously uncharacterized autosomal recessive leukodystrophy which is associated with the homozygous missense variant in ZNF319 (c.800T>C; p.Phe267Ser) in an 18-year-old male presenting with spasticity, ataxia, cognitive decline, and white matter abnormalities on MRI. The variant was absent in population databases (gnomAD, ClinVar) and predicted to be pathogenic by multiple in silico tools. Molecular dynamics simulations revealed that F267 is a stabilizing residue within a β-strand of the zinc finger domain, forming π-stacking and hydrophobic interactions that are lost upon substitution with serine, leading to structural instability, increased flexibility, and protein unfolding. Despite normal transcript and protein expression, ZNF319-F267S mislocalized to the cytoplasm due to disruption of its bipartite nuclear localization signal (NLS), resulting in impaired interaction with importin α1 (KPNA1). Functional analysis confirmed that the mutation disrupts nuclear transport and prevents transcriptional activation of genes involved in myelination. Protein interaction network and gene ontology analysis highlighted ZNF319's role in transcriptional regulation and its localization in the CHOP-C/EBP transcriptional complex. Expression profiling demonstrated ZNF319 enrichment in oligodendrocytes and white matter regions, correlating with the observed leukoencephalopathy. Our study identifies ZNF319 as a novel gene implicated in human leukodystrophy and highlights how a single-point mutation can compromise nuclear import and transcriptional function, leading to white matter degeneration. These findings expand the genetic landscape of leukodystrophies and provide mechanistic insights into transcriptional regulation in myelin maintenance.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pathogenic ZNF319 variant disrupts nuclear localization and transcriptional regulation to cause a novel form of autosomal recessive leukodystrophy.\",\"authors\":\"S Rehan Ahmad, Md Zeyaullah, Yousef Zahrani, Abdelrhman A G Altijani, Adam Dawria, Ahmed Salih\",\"doi\":\"10.1038/s10038-025-01386-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Leukodystrophies are inherited disorders characterized by progressive degeneration of white matter in the central nervous system. Here, we investigate a previously uncharacterized autosomal recessive leukodystrophy which is associated with the homozygous missense variant in ZNF319 (c.800T>C; p.Phe267Ser) in an 18-year-old male presenting with spasticity, ataxia, cognitive decline, and white matter abnormalities on MRI. The variant was absent in population databases (gnomAD, ClinVar) and predicted to be pathogenic by multiple in silico tools. Molecular dynamics simulations revealed that F267 is a stabilizing residue within a β-strand of the zinc finger domain, forming π-stacking and hydrophobic interactions that are lost upon substitution with serine, leading to structural instability, increased flexibility, and protein unfolding. Despite normal transcript and protein expression, ZNF319-F267S mislocalized to the cytoplasm due to disruption of its bipartite nuclear localization signal (NLS), resulting in impaired interaction with importin α1 (KPNA1). Functional analysis confirmed that the mutation disrupts nuclear transport and prevents transcriptional activation of genes involved in myelination. Protein interaction network and gene ontology analysis highlighted ZNF319's role in transcriptional regulation and its localization in the CHOP-C/EBP transcriptional complex. Expression profiling demonstrated ZNF319 enrichment in oligodendrocytes and white matter regions, correlating with the observed leukoencephalopathy. Our study identifies ZNF319 as a novel gene implicated in human leukodystrophy and highlights how a single-point mutation can compromise nuclear import and transcriptional function, leading to white matter degeneration. These findings expand the genetic landscape of leukodystrophies and provide mechanistic insights into transcriptional regulation in myelin maintenance.</p>\",\"PeriodicalId\":16077,\"journal\":{\"name\":\"Journal of Human Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s10038-025-01386-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s10038-025-01386-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

脑白质营养不良是一种以中枢神经系统白质进行性变性为特征的遗传性疾病。在这里,我们研究了一名18岁男性患者的常染色体隐性白质营养不良,该患者与ZNF319纯合错义变异(C . 800t >C; p.Phe267Ser)有关,在MRI上表现为痉挛、共济失调、认知能力下降和白质异常。该变异在种群数据库(gnomAD, ClinVar)中不存在,并通过多种计算机工具预测具有致病性。分子动力学模拟表明,F267是锌指结构域β-链内的一个稳定残基,形成π堆积和疏水相互作用,这些相互作用在被丝氨酸取代时丢失,导致结构不稳定,柔韧性增加和蛋白质展开。尽管转录和蛋白表达正常,但ZNF319-F267S由于其双核定位信号(NLS)被破坏而错定位到细胞质上,导致与输入蛋白α1 (KPNA1)的相互作用受损。功能分析证实,该突变破坏核转运并阻止参与髓鞘形成的基因的转录激活。蛋白相互作用网络和基因本体分析显示ZNF319在转录调控中的作用及其在CHOP-C/EBP转录复合体中的定位。表达谱显示ZNF319在少突胶质细胞和白质区域富集,与观察到的白质脑病相关。我们的研究确定了ZNF319是一个与人类脑白质营养不良有关的新基因,并强调了单点突变如何损害核输入和转录功能,导致白质变性。这些发现扩大了白质营养不良的遗传景观,并为髓磷脂维持的转录调控提供了机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pathogenic ZNF319 variant disrupts nuclear localization and transcriptional regulation to cause a novel form of autosomal recessive leukodystrophy.

Leukodystrophies are inherited disorders characterized by progressive degeneration of white matter in the central nervous system. Here, we investigate a previously uncharacterized autosomal recessive leukodystrophy which is associated with the homozygous missense variant in ZNF319 (c.800T>C; p.Phe267Ser) in an 18-year-old male presenting with spasticity, ataxia, cognitive decline, and white matter abnormalities on MRI. The variant was absent in population databases (gnomAD, ClinVar) and predicted to be pathogenic by multiple in silico tools. Molecular dynamics simulations revealed that F267 is a stabilizing residue within a β-strand of the zinc finger domain, forming π-stacking and hydrophobic interactions that are lost upon substitution with serine, leading to structural instability, increased flexibility, and protein unfolding. Despite normal transcript and protein expression, ZNF319-F267S mislocalized to the cytoplasm due to disruption of its bipartite nuclear localization signal (NLS), resulting in impaired interaction with importin α1 (KPNA1). Functional analysis confirmed that the mutation disrupts nuclear transport and prevents transcriptional activation of genes involved in myelination. Protein interaction network and gene ontology analysis highlighted ZNF319's role in transcriptional regulation and its localization in the CHOP-C/EBP transcriptional complex. Expression profiling demonstrated ZNF319 enrichment in oligodendrocytes and white matter regions, correlating with the observed leukoencephalopathy. Our study identifies ZNF319 as a novel gene implicated in human leukodystrophy and highlights how a single-point mutation can compromise nuclear import and transcriptional function, leading to white matter degeneration. These findings expand the genetic landscape of leukodystrophies and provide mechanistic insights into transcriptional regulation in myelin maintenance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Human Genetics
Journal of Human Genetics 生物-遗传学
CiteScore
7.20
自引率
0.00%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy. Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信