{"title":"评估DeepSeek-R1在多学科检验医学中的临床决策支持。","authors":"Qinpeng Li, Lili Zhan, Xinjian Cai","doi":"10.2147/JMDH.S538253","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recent advancements in artificial intelligence (AI), particularly with large language models (LLMs), are transforming healthcare by enhancing diagnostic decision-making and clinical workflows. The application of LLMs like DeepSeek-R1 in clinical laboratory medicine demonstrates potential for improving diagnostic accuracy, supporting decision-making, and optimizing patient care.</p><p><strong>Objective: </strong>This study evaluates the performance of DeepSeek-R1 in analyzing clinical laboratory cases and assisting with medical decision-making. The focus is on assessing its accuracy and completeness in generating diagnostic hypotheses, differential diagnoses, and diagnostic workups across diverse clinical cases.</p><p><strong>Methods: </strong>We analyzed 100 clinical cases from <i>Clinical Laboratory Medicine Case Studies</i>, which includes comprehensive case histories and laboratory findings. DeepSeek-R1 was queried independently for each case three times, with three specific questions regarding diagnosis, differential diagnoses, and diagnostic tests. The outputs were assessed for accuracy and completeness by senior clinical laboratory physicians.</p><p><strong>Results: </strong>DeepSeek-R1 achieved an overall accuracy of 72.9% (95% CI [69.9%, 75.7%]) and completeness of 73.4% (95% CI [70.5%, 76.2%]). Performance varied by question type: the highest accuracy was observed for diagnostic hypotheses (85.7%, 95% CI [81.2%, 89.2%]) and the lowest for differential diagnoses (55.0%, 95% CI [49.3%, 60.5%]). Notable variations in performance were also seen across disease categories, with the best performance observed in genetic and obstetric diagnostics (accuracy 93.1%, 95% CI [84.0%, 97.3%]; completeness 86.1%, 95% CI [76.4%, 92.3%]).</p><p><strong>Conclusion: </strong>DeepSeek-R1 demonstrates potential for a decision-support tool in clinical laboratory medicine, particularly in generating diagnostic hypotheses and recommending diagnostic workups. However, its performance in differential diagnosis and handling specific clinical nuances remains limited. Future work should focus on expanding training data, integrating clinical ontologies, and incorporating physician feedback to improve real-world applicability. DeepSeek-R1 and the new versions under development may be promising tools for non-medical professionals and professionals in medical laboratory diagnoses.</p>","PeriodicalId":16357,"journal":{"name":"Journal of Multidisciplinary Healthcare","volume":"18 ","pages":"4979-4988"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357597/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing DeepSeek-R1 for Clinical Decision Support in Multidisciplinary Laboratory Medicine.\",\"authors\":\"Qinpeng Li, Lili Zhan, Xinjian Cai\",\"doi\":\"10.2147/JMDH.S538253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Recent advancements in artificial intelligence (AI), particularly with large language models (LLMs), are transforming healthcare by enhancing diagnostic decision-making and clinical workflows. The application of LLMs like DeepSeek-R1 in clinical laboratory medicine demonstrates potential for improving diagnostic accuracy, supporting decision-making, and optimizing patient care.</p><p><strong>Objective: </strong>This study evaluates the performance of DeepSeek-R1 in analyzing clinical laboratory cases and assisting with medical decision-making. The focus is on assessing its accuracy and completeness in generating diagnostic hypotheses, differential diagnoses, and diagnostic workups across diverse clinical cases.</p><p><strong>Methods: </strong>We analyzed 100 clinical cases from <i>Clinical Laboratory Medicine Case Studies</i>, which includes comprehensive case histories and laboratory findings. DeepSeek-R1 was queried independently for each case three times, with three specific questions regarding diagnosis, differential diagnoses, and diagnostic tests. The outputs were assessed for accuracy and completeness by senior clinical laboratory physicians.</p><p><strong>Results: </strong>DeepSeek-R1 achieved an overall accuracy of 72.9% (95% CI [69.9%, 75.7%]) and completeness of 73.4% (95% CI [70.5%, 76.2%]). Performance varied by question type: the highest accuracy was observed for diagnostic hypotheses (85.7%, 95% CI [81.2%, 89.2%]) and the lowest for differential diagnoses (55.0%, 95% CI [49.3%, 60.5%]). Notable variations in performance were also seen across disease categories, with the best performance observed in genetic and obstetric diagnostics (accuracy 93.1%, 95% CI [84.0%, 97.3%]; completeness 86.1%, 95% CI [76.4%, 92.3%]).</p><p><strong>Conclusion: </strong>DeepSeek-R1 demonstrates potential for a decision-support tool in clinical laboratory medicine, particularly in generating diagnostic hypotheses and recommending diagnostic workups. However, its performance in differential diagnosis and handling specific clinical nuances remains limited. Future work should focus on expanding training data, integrating clinical ontologies, and incorporating physician feedback to improve real-world applicability. DeepSeek-R1 and the new versions under development may be promising tools for non-medical professionals and professionals in medical laboratory diagnoses.</p>\",\"PeriodicalId\":16357,\"journal\":{\"name\":\"Journal of Multidisciplinary Healthcare\",\"volume\":\"18 \",\"pages\":\"4979-4988\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357597/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multidisciplinary Healthcare\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/JMDH.S538253\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multidisciplinary Healthcare","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JMDH.S538253","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Assessing DeepSeek-R1 for Clinical Decision Support in Multidisciplinary Laboratory Medicine.
Background: Recent advancements in artificial intelligence (AI), particularly with large language models (LLMs), are transforming healthcare by enhancing diagnostic decision-making and clinical workflows. The application of LLMs like DeepSeek-R1 in clinical laboratory medicine demonstrates potential for improving diagnostic accuracy, supporting decision-making, and optimizing patient care.
Objective: This study evaluates the performance of DeepSeek-R1 in analyzing clinical laboratory cases and assisting with medical decision-making. The focus is on assessing its accuracy and completeness in generating diagnostic hypotheses, differential diagnoses, and diagnostic workups across diverse clinical cases.
Methods: We analyzed 100 clinical cases from Clinical Laboratory Medicine Case Studies, which includes comprehensive case histories and laboratory findings. DeepSeek-R1 was queried independently for each case three times, with three specific questions regarding diagnosis, differential diagnoses, and diagnostic tests. The outputs were assessed for accuracy and completeness by senior clinical laboratory physicians.
Results: DeepSeek-R1 achieved an overall accuracy of 72.9% (95% CI [69.9%, 75.7%]) and completeness of 73.4% (95% CI [70.5%, 76.2%]). Performance varied by question type: the highest accuracy was observed for diagnostic hypotheses (85.7%, 95% CI [81.2%, 89.2%]) and the lowest for differential diagnoses (55.0%, 95% CI [49.3%, 60.5%]). Notable variations in performance were also seen across disease categories, with the best performance observed in genetic and obstetric diagnostics (accuracy 93.1%, 95% CI [84.0%, 97.3%]; completeness 86.1%, 95% CI [76.4%, 92.3%]).
Conclusion: DeepSeek-R1 demonstrates potential for a decision-support tool in clinical laboratory medicine, particularly in generating diagnostic hypotheses and recommending diagnostic workups. However, its performance in differential diagnosis and handling specific clinical nuances remains limited. Future work should focus on expanding training data, integrating clinical ontologies, and incorporating physician feedback to improve real-world applicability. DeepSeek-R1 and the new versions under development may be promising tools for non-medical professionals and professionals in medical laboratory diagnoses.
期刊介绍:
The Journal of Multidisciplinary Healthcare (JMDH) aims to represent and publish research in healthcare areas delivered by practitioners of different disciplines. This includes studies and reviews conducted by multidisciplinary teams as well as research which evaluates or reports the results or conduct of such teams or healthcare processes in general. The journal covers a very wide range of areas and we welcome submissions from practitioners at all levels and from all over the world. Good healthcare is not bounded by person, place or time and the journal aims to reflect this. The JMDH is published as an open-access journal to allow this wide range of practical, patient relevant research to be immediately available to practitioners who can access and use it immediately upon publication.