治疗青光眼的纳米微复合给药系统:设计策略及研究进展。

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Jiaru Hu, Wen Shen, Pi Yan, Xuemei Ge, Shang Wu, Yueyang Mao, Fen Ao, Xiaoni Jia, Yigang Wang
{"title":"治疗青光眼的纳米微复合给药系统:设计策略及研究进展。","authors":"Jiaru Hu, Wen Shen, Pi Yan, Xuemei Ge, Shang Wu, Yueyang Mao, Fen Ao, Xiaoni Jia, Yigang Wang","doi":"10.1080/09205063.2025.2525672","DOIUrl":null,"url":null,"abstract":"<p><p>Glaucoma is a serious eye disease characterized by damage to the optic nerve, potentially leading to severe vision loss or even blindness. Lowering IOP is a crucial strategy in managing the disease. Although trabeculectomy is considered the gold standard in conventional treatment for preventing vision loss, surgical interventions often face challenges such as poor prognosis, high failure rates, and complications. Consequently, pharmacological treatment remains a main method in the management of glaucoma. The efficacy of drug therapy is hindered by the ocular barrier, which impedes drug penetration into the eye to reach the target tissues, resulting in low drug bioavailability. Composite nano-in-micro drug delivery systems as a solution, capable of simultaneously addressing issues such as poor ocular barrier penetration, surface adhesion, and bioavailability. This review explores different fabrication methods, materials, and design strategies for composite nano-in-micro drug delivery systems aimed at treating glaucoma. The review concludes that composite drug delivery systems hold promise as an effective strategy to enhance the bioavailability of glaucoma medications and extend drug release duration. Furthermore, these Composite systems offer innovative approaches to gene and targeted therapy, opening new avenues for the treatment of glaucoma.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-46"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite nano-in-micro drug delivery system for treatment of glaucoma: design strategies and research advances.\",\"authors\":\"Jiaru Hu, Wen Shen, Pi Yan, Xuemei Ge, Shang Wu, Yueyang Mao, Fen Ao, Xiaoni Jia, Yigang Wang\",\"doi\":\"10.1080/09205063.2025.2525672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glaucoma is a serious eye disease characterized by damage to the optic nerve, potentially leading to severe vision loss or even blindness. Lowering IOP is a crucial strategy in managing the disease. Although trabeculectomy is considered the gold standard in conventional treatment for preventing vision loss, surgical interventions often face challenges such as poor prognosis, high failure rates, and complications. Consequently, pharmacological treatment remains a main method in the management of glaucoma. The efficacy of drug therapy is hindered by the ocular barrier, which impedes drug penetration into the eye to reach the target tissues, resulting in low drug bioavailability. Composite nano-in-micro drug delivery systems as a solution, capable of simultaneously addressing issues such as poor ocular barrier penetration, surface adhesion, and bioavailability. This review explores different fabrication methods, materials, and design strategies for composite nano-in-micro drug delivery systems aimed at treating glaucoma. The review concludes that composite drug delivery systems hold promise as an effective strategy to enhance the bioavailability of glaucoma medications and extend drug release duration. Furthermore, these Composite systems offer innovative approaches to gene and targeted therapy, opening new avenues for the treatment of glaucoma.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"1-46\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2025.2525672\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2525672","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

青光眼是一种严重的眼部疾病,其特征是视神经受损,可能导致严重的视力丧失甚至失明。降低眼压是控制该疾病的关键策略。尽管小梁切除术被认为是预防视力丧失的传统治疗的金标准,但手术干预经常面临诸如预后差、失败率高和并发症等挑战。因此,药物治疗仍然是青光眼治疗的主要方法。药物治疗的效果受到眼屏障的阻碍,眼屏障阻碍药物通过眼内到达靶组织,导致药物生物利用度低。复合纳米-微药物递送系统作为一种解决方案,能够同时解决诸如眼屏障穿透性差,表面粘附性和生物利用度等问题。本文综述了用于治疗青光眼的纳米微复合给药系统的不同制造方法、材料和设计策略。该综述认为,复合给药系统有望成为提高青光眼药物生物利用度和延长药物释放时间的有效策略。此外,这些复合系统为基因和靶向治疗提供了创新的方法,为青光眼的治疗开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Composite nano-in-micro drug delivery system for treatment of glaucoma: design strategies and research advances.

Glaucoma is a serious eye disease characterized by damage to the optic nerve, potentially leading to severe vision loss or even blindness. Lowering IOP is a crucial strategy in managing the disease. Although trabeculectomy is considered the gold standard in conventional treatment for preventing vision loss, surgical interventions often face challenges such as poor prognosis, high failure rates, and complications. Consequently, pharmacological treatment remains a main method in the management of glaucoma. The efficacy of drug therapy is hindered by the ocular barrier, which impedes drug penetration into the eye to reach the target tissues, resulting in low drug bioavailability. Composite nano-in-micro drug delivery systems as a solution, capable of simultaneously addressing issues such as poor ocular barrier penetration, surface adhesion, and bioavailability. This review explores different fabrication methods, materials, and design strategies for composite nano-in-micro drug delivery systems aimed at treating glaucoma. The review concludes that composite drug delivery systems hold promise as an effective strategy to enhance the bioavailability of glaucoma medications and extend drug release duration. Furthermore, these Composite systems offer innovative approaches to gene and targeted therapy, opening new avenues for the treatment of glaucoma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信