肠道菌群介导的甜菜碱通过影响m6A RNA甲基化和Myh7表达调节骨骼肌纤维类型转变。

IF 11 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Gut Microbes Pub Date : 2025-12-01 Epub Date: 2025-08-18 DOI:10.1080/19490976.2025.2545434
Chao Yan, Yilong Yao, Zhaobo Zhang, Fanqinyu Li, Danyang Fan, Wen Liu, Xinhao Fan, Lingna Xu, Yanwen Liu, Shilong Wang, Mengling Hu, Yalan Yang, Zhonglin Tang
{"title":"肠道菌群介导的甜菜碱通过影响m6A RNA甲基化和Myh7表达调节骨骼肌纤维类型转变。","authors":"Chao Yan, Yilong Yao, Zhaobo Zhang, Fanqinyu Li, Danyang Fan, Wen Liu, Xinhao Fan, Lingna Xu, Yanwen Liu, Shilong Wang, Mengling Hu, Yalan Yang, Zhonglin Tang","doi":"10.1080/19490976.2025.2545434","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscle fiber composition is essential for maintaining muscle function and overall health. Growing evidence underscores the pivotal role of the gut-muscle axis in mediating the influence of gut microbiota on skeletal muscle development. However, the mechanisms underlying microbiota-mediated regulation of skeletal muscle fiber type remain unclear. Here, we employed multi-omics approaches, including RNA-seq, MeRIP-seq, 16S rRNA gene sequencing, and metabolomics, to investigate the causal relationship between the gut microbiota and skeletal muscle fiber transition. Our results demonstrate that the gut microbiota modulates skeletal muscle fiber transition by influencing N6-methyladenosine (m<sup>6</sup>A) methylation to regulate the expression of the slow-twitch fiber marker <i>Myh7</i>. Specifically, METTL3-dependent m<sup>6</sup>A methylation enhances <i>Myh7</i> gene expression, leading to an increased proportion of slow-twitch fibers and a reduction in fast-twitch fibers. Furthermore, the microbiota-derived methyl donor betaine promotes <i>Myh7</i> expression and <i>Akkermansia muciniphila</i> (<i>AKK</i>) abundance, and facilitates fast-to-slow fiber conversion via m<sup>6</sup>A modification. The transplantation of <i>AKK</i> significantly altered betaine levels and m<sup>6</sup>A modification, thereby promoting muscle fiber remodeling. In conclusion, these findings reveal that <i>AKK</i>-coordinated betaine drives skeletal muscle fiber conversion by modulating <i>Myh7</i> mRNA expression. This study provides novel insights into the role of m<sup>6</sup>A RNA methylation in the gut-muscle crosstalk, highlighting potential therapeutic targets for muscle-related disorders.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2545434"},"PeriodicalIF":11.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12363516/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gut microbiota-mediated betaine regulates skeletal muscle fiber type transition by affecting m<sup>6</sup>A RNA methylation and <i>Myh7</i> expression.\",\"authors\":\"Chao Yan, Yilong Yao, Zhaobo Zhang, Fanqinyu Li, Danyang Fan, Wen Liu, Xinhao Fan, Lingna Xu, Yanwen Liu, Shilong Wang, Mengling Hu, Yalan Yang, Zhonglin Tang\",\"doi\":\"10.1080/19490976.2025.2545434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skeletal muscle fiber composition is essential for maintaining muscle function and overall health. Growing evidence underscores the pivotal role of the gut-muscle axis in mediating the influence of gut microbiota on skeletal muscle development. However, the mechanisms underlying microbiota-mediated regulation of skeletal muscle fiber type remain unclear. Here, we employed multi-omics approaches, including RNA-seq, MeRIP-seq, 16S rRNA gene sequencing, and metabolomics, to investigate the causal relationship between the gut microbiota and skeletal muscle fiber transition. Our results demonstrate that the gut microbiota modulates skeletal muscle fiber transition by influencing N6-methyladenosine (m<sup>6</sup>A) methylation to regulate the expression of the slow-twitch fiber marker <i>Myh7</i>. Specifically, METTL3-dependent m<sup>6</sup>A methylation enhances <i>Myh7</i> gene expression, leading to an increased proportion of slow-twitch fibers and a reduction in fast-twitch fibers. Furthermore, the microbiota-derived methyl donor betaine promotes <i>Myh7</i> expression and <i>Akkermansia muciniphila</i> (<i>AKK</i>) abundance, and facilitates fast-to-slow fiber conversion via m<sup>6</sup>A modification. The transplantation of <i>AKK</i> significantly altered betaine levels and m<sup>6</sup>A modification, thereby promoting muscle fiber remodeling. In conclusion, these findings reveal that <i>AKK</i>-coordinated betaine drives skeletal muscle fiber conversion by modulating <i>Myh7</i> mRNA expression. This study provides novel insights into the role of m<sup>6</sup>A RNA methylation in the gut-muscle crosstalk, highlighting potential therapeutic targets for muscle-related disorders.</p>\",\"PeriodicalId\":12909,\"journal\":{\"name\":\"Gut Microbes\",\"volume\":\"17 1\",\"pages\":\"2545434\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12363516/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gut Microbes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19490976.2025.2545434\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2025.2545434","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

骨骼肌纤维成分对维持肌肉功能和整体健康至关重要。越来越多的证据强调肠肌轴在调节肠道微生物群对骨骼肌发育的影响中的关键作用。然而,微生物群介导的骨骼肌纤维类型调节的机制尚不清楚。在这里,我们采用多组学方法,包括RNA-seq、MeRIP-seq、16S rRNA基因测序和代谢组学,来研究肠道微生物群与骨骼肌纤维转化之间的因果关系。我们的研究结果表明,肠道微生物群通过影响n6 -甲基腺苷(m6A)甲基化来调节慢肌纤维标记Myh7的表达,从而调节骨骼肌纤维的转变。具体来说,mettl3依赖的m6A甲基化增强了Myh7基因表达,导致慢肌纤维比例增加,快肌纤维比例减少。此外,微生物来源的甲基给体甜菜碱促进Myh7表达和Akkermansia muciniphila (AKK)丰度,并通过m6A修饰促进快到慢的纤维转化。AKK移植显著改变甜菜碱水平和m6A修饰,从而促进肌纤维重塑。综上所述,这些发现表明akk -协同甜菜碱通过调节Myh7 mRNA的表达来驱动骨骼肌纤维的转化。这项研究为m6A RNA甲基化在肠肌串扰中的作用提供了新的见解,突出了肌肉相关疾病的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gut microbiota-mediated betaine regulates skeletal muscle fiber type transition by affecting m6A RNA methylation and Myh7 expression.

Skeletal muscle fiber composition is essential for maintaining muscle function and overall health. Growing evidence underscores the pivotal role of the gut-muscle axis in mediating the influence of gut microbiota on skeletal muscle development. However, the mechanisms underlying microbiota-mediated regulation of skeletal muscle fiber type remain unclear. Here, we employed multi-omics approaches, including RNA-seq, MeRIP-seq, 16S rRNA gene sequencing, and metabolomics, to investigate the causal relationship between the gut microbiota and skeletal muscle fiber transition. Our results demonstrate that the gut microbiota modulates skeletal muscle fiber transition by influencing N6-methyladenosine (m6A) methylation to regulate the expression of the slow-twitch fiber marker Myh7. Specifically, METTL3-dependent m6A methylation enhances Myh7 gene expression, leading to an increased proportion of slow-twitch fibers and a reduction in fast-twitch fibers. Furthermore, the microbiota-derived methyl donor betaine promotes Myh7 expression and Akkermansia muciniphila (AKK) abundance, and facilitates fast-to-slow fiber conversion via m6A modification. The transplantation of AKK significantly altered betaine levels and m6A modification, thereby promoting muscle fiber remodeling. In conclusion, these findings reveal that AKK-coordinated betaine drives skeletal muscle fiber conversion by modulating Myh7 mRNA expression. This study provides novel insights into the role of m6A RNA methylation in the gut-muscle crosstalk, highlighting potential therapeutic targets for muscle-related disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gut Microbes
Gut Microbes Medicine-Microbiology (medical)
CiteScore
18.20
自引率
3.30%
发文量
196
审稿时长
10 weeks
期刊介绍: The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more. Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信