{"title":"高尔基河畔的艺术:四个指挥家,一个管弦乐队。","authors":"Selma Yilmaz Dejgaard, John F Presley","doi":"10.3389/fmolb.2025.1612531","DOIUrl":null,"url":null,"abstract":"<p><p>Arfs are small Ras-superfamily proteins important for regulating membrane trafficking including the recruitment of vesicular coats as well as a diverse range of other functions. There are five Arfs in humans: two Class I Arfs (Arf1 and Arf3), two Class II Arfs (Arf4 and Arf5) and one Class III Arf (Arf6), with Class I and Class II Arfs present on the Golgi apparatus among other locations. These Golgi Arfs (Arf1, Arf3, Arf4 and Arf5) are highly similar in sequence, and knockout studies have established a complex pattern of redundancy, with Arf4 alone able to support cell survival in tissue culture. Moreover, adding to the complexity, functions of Arfs on distinct membranes can involve non-overlapping sets of effectors (e.g., COPI on <i>cis</i>-Golgi membranes and clathrin adaptors on <i>trans</i>-Golgi network). The three classes of Arfs are found in most metazoans, suggesting biologically important specialization the details of which are beginning to emerge. This review examines recent studies using siRNA and CRISPR/Cas9 knockouts of mammalian Arfs combined with functional assays of the secretory pathway in the context of detailed localization of fluorescently-tagged Arfs by fluorescent and super-resolution microscopy and the existing literature using more conventional techniques. We suggest that specificity of effector recruitment involves additional membrane determinants which need to be considered in future studies.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1612531"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12350278/pdf/","citationCount":"0","resultStr":"{\"title\":\"Arfs on the Golgi: four conductors, one orchestra.\",\"authors\":\"Selma Yilmaz Dejgaard, John F Presley\",\"doi\":\"10.3389/fmolb.2025.1612531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arfs are small Ras-superfamily proteins important for regulating membrane trafficking including the recruitment of vesicular coats as well as a diverse range of other functions. There are five Arfs in humans: two Class I Arfs (Arf1 and Arf3), two Class II Arfs (Arf4 and Arf5) and one Class III Arf (Arf6), with Class I and Class II Arfs present on the Golgi apparatus among other locations. These Golgi Arfs (Arf1, Arf3, Arf4 and Arf5) are highly similar in sequence, and knockout studies have established a complex pattern of redundancy, with Arf4 alone able to support cell survival in tissue culture. Moreover, adding to the complexity, functions of Arfs on distinct membranes can involve non-overlapping sets of effectors (e.g., COPI on <i>cis</i>-Golgi membranes and clathrin adaptors on <i>trans</i>-Golgi network). The three classes of Arfs are found in most metazoans, suggesting biologically important specialization the details of which are beginning to emerge. This review examines recent studies using siRNA and CRISPR/Cas9 knockouts of mammalian Arfs combined with functional assays of the secretory pathway in the context of detailed localization of fluorescently-tagged Arfs by fluorescent and super-resolution microscopy and the existing literature using more conventional techniques. We suggest that specificity of effector recruitment involves additional membrane determinants which need to be considered in future studies.</p>\",\"PeriodicalId\":12465,\"journal\":{\"name\":\"Frontiers in Molecular Biosciences\",\"volume\":\"12 \",\"pages\":\"1612531\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12350278/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Molecular Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmolb.2025.1612531\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1612531","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Arfs on the Golgi: four conductors, one orchestra.
Arfs are small Ras-superfamily proteins important for regulating membrane trafficking including the recruitment of vesicular coats as well as a diverse range of other functions. There are five Arfs in humans: two Class I Arfs (Arf1 and Arf3), two Class II Arfs (Arf4 and Arf5) and one Class III Arf (Arf6), with Class I and Class II Arfs present on the Golgi apparatus among other locations. These Golgi Arfs (Arf1, Arf3, Arf4 and Arf5) are highly similar in sequence, and knockout studies have established a complex pattern of redundancy, with Arf4 alone able to support cell survival in tissue culture. Moreover, adding to the complexity, functions of Arfs on distinct membranes can involve non-overlapping sets of effectors (e.g., COPI on cis-Golgi membranes and clathrin adaptors on trans-Golgi network). The three classes of Arfs are found in most metazoans, suggesting biologically important specialization the details of which are beginning to emerge. This review examines recent studies using siRNA and CRISPR/Cas9 knockouts of mammalian Arfs combined with functional assays of the secretory pathway in the context of detailed localization of fluorescently-tagged Arfs by fluorescent and super-resolution microscopy and the existing literature using more conventional techniques. We suggest that specificity of effector recruitment involves additional membrane determinants which need to be considered in future studies.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.