纳米气泡注入的电解质在液体供气CO2电还原中增强传质。

IF 6.2 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jieyang Li, Changhao Luo, Huanlei Zhang, Zijia Huang, Zhan Jiang, Jianuo Chen, Thomas S Miller, Kun Jiang, Rhodri Jervis, Yongye Liang, Meng Lin
{"title":"纳米气泡注入的电解质在液体供气CO2电还原中增强传质。","authors":"Jieyang Li, Changhao Luo, Huanlei Zhang, Zijia Huang, Zhan Jiang, Jianuo Chen, Thomas S Miller, Kun Jiang, Rhodri Jervis, Yongye Liang, Meng Lin","doi":"10.1038/s42004-025-01645-5","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical carbon dioxide reduction (CO<sub>2</sub>RR) in aqueous systems provides a sustainable pathway to convert CO<sub>2</sub> into valuable chemicals and fuels. However, the limited solubility and slow diffusion of CO<sub>2</sub> in aqueous electrolyte impose significant mass transfer barriers, particularly at high current densities. This study introduces a nanobubble-infused electrolyte strategy that leverages the unique properties of nanobubbles, including localized CO<sub>2</sub> enrichment, enhanced diffusion, and micro-convection to overcome these limitations. Compared to conventional CO<sub>2</sub>-saturated electrolytes, the nanobubble-infused electrolytes achieve a 10-fold increase in the volumetric mass transfer coefficient and a 42.3% increase in the limiting current density. Implementing this approach with a zero-gap liquid-fed electrolyzer featuring a hydrophilic diffusion medium further enhances mass transfer, yielding an additional 28% increase in limiting current density. Mechanistic insights from multiphysics simulations reveal that nanobubbles enhance CO<sub>2</sub> availability near the catalyst, reduce overpotentials, and improve CO<sub>2</sub>RR selectivity by suppressing hydrogen evolution. By validating this scalable and robust approach across different catalysts, this work establishes nanobubble-infused electrolytes as a universal solution for addressing mass transfer challenges independent of catalyst choice in liquid-fed CO<sub>2</sub>RR and paves the way for industrial-scale CO<sub>2</sub> conversion technologies.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"251"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361496/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nanobubble-infused electrolytes for enhanced mass transfer in liquid-fed CO<sub>2</sub> electroreduction.\",\"authors\":\"Jieyang Li, Changhao Luo, Huanlei Zhang, Zijia Huang, Zhan Jiang, Jianuo Chen, Thomas S Miller, Kun Jiang, Rhodri Jervis, Yongye Liang, Meng Lin\",\"doi\":\"10.1038/s42004-025-01645-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrochemical carbon dioxide reduction (CO<sub>2</sub>RR) in aqueous systems provides a sustainable pathway to convert CO<sub>2</sub> into valuable chemicals and fuels. However, the limited solubility and slow diffusion of CO<sub>2</sub> in aqueous electrolyte impose significant mass transfer barriers, particularly at high current densities. This study introduces a nanobubble-infused electrolyte strategy that leverages the unique properties of nanobubbles, including localized CO<sub>2</sub> enrichment, enhanced diffusion, and micro-convection to overcome these limitations. Compared to conventional CO<sub>2</sub>-saturated electrolytes, the nanobubble-infused electrolytes achieve a 10-fold increase in the volumetric mass transfer coefficient and a 42.3% increase in the limiting current density. Implementing this approach with a zero-gap liquid-fed electrolyzer featuring a hydrophilic diffusion medium further enhances mass transfer, yielding an additional 28% increase in limiting current density. Mechanistic insights from multiphysics simulations reveal that nanobubbles enhance CO<sub>2</sub> availability near the catalyst, reduce overpotentials, and improve CO<sub>2</sub>RR selectivity by suppressing hydrogen evolution. By validating this scalable and robust approach across different catalysts, this work establishes nanobubble-infused electrolytes as a universal solution for addressing mass transfer challenges independent of catalyst choice in liquid-fed CO<sub>2</sub>RR and paves the way for industrial-scale CO<sub>2</sub> conversion technologies.</p>\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":\"8 1\",\"pages\":\"251\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361496/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s42004-025-01645-5\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01645-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水系统中的电化学二氧化碳还原(CO2RR)为将二氧化碳转化为有价值的化学品和燃料提供了一种可持续的途径。然而,CO2在水电解质中有限的溶解度和缓慢的扩散造成了显著的传质障碍,特别是在高电流密度下。本研究介绍了一种纳米气泡注入电解质的策略,该策略利用纳米气泡的独特特性,包括局部CO2富集,增强扩散和微对流来克服这些限制。与传统的二氧化碳饱和电解质相比,纳米气泡注入电解质的体积传质系数提高了10倍,极限电流密度提高了42.3%。采用亲水扩散介质的零间隙液体进料电解槽进一步增强了传质,使极限电流密度增加了28%。多物理场模拟的机理揭示了纳米气泡通过抑制析氢提高催化剂附近的CO2可用性,降低过电位,提高CO2RR选择性。通过在不同催化剂上验证这种可扩展且强大的方法,该工作建立了纳米气泡注入电解质作为解决液供CO2RR中不依赖催化剂选择的传质挑战的通用解决方案,并为工业规模的二氧化碳转化技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanobubble-infused electrolytes for enhanced mass transfer in liquid-fed CO<sub>2</sub> electroreduction.

Nanobubble-infused electrolytes for enhanced mass transfer in liquid-fed CO<sub>2</sub> electroreduction.

Nanobubble-infused electrolytes for enhanced mass transfer in liquid-fed CO<sub>2</sub> electroreduction.

Nanobubble-infused electrolytes for enhanced mass transfer in liquid-fed CO2 electroreduction.

Electrochemical carbon dioxide reduction (CO2RR) in aqueous systems provides a sustainable pathway to convert CO2 into valuable chemicals and fuels. However, the limited solubility and slow diffusion of CO2 in aqueous electrolyte impose significant mass transfer barriers, particularly at high current densities. This study introduces a nanobubble-infused electrolyte strategy that leverages the unique properties of nanobubbles, including localized CO2 enrichment, enhanced diffusion, and micro-convection to overcome these limitations. Compared to conventional CO2-saturated electrolytes, the nanobubble-infused electrolytes achieve a 10-fold increase in the volumetric mass transfer coefficient and a 42.3% increase in the limiting current density. Implementing this approach with a zero-gap liquid-fed electrolyzer featuring a hydrophilic diffusion medium further enhances mass transfer, yielding an additional 28% increase in limiting current density. Mechanistic insights from multiphysics simulations reveal that nanobubbles enhance CO2 availability near the catalyst, reduce overpotentials, and improve CO2RR selectivity by suppressing hydrogen evolution. By validating this scalable and robust approach across different catalysts, this work establishes nanobubble-infused electrolytes as a universal solution for addressing mass transfer challenges independent of catalyst choice in liquid-fed CO2RR and paves the way for industrial-scale CO2 conversion technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信