Senthamaraikannan Yasodha, Sundaram Vickram, Shanmugam Rajeshkumar, Hitesh Chopra, Tabarak Malik
{"title":"决明子瘘花制备的聚乙二醇偶联硒纳米复合材料对HepG2细胞凋亡和细胞周期阻滞的体外评估。","authors":"Senthamaraikannan Yasodha, Sundaram Vickram, Shanmugam Rajeshkumar, Hitesh Chopra, Tabarak Malik","doi":"10.1155/bmri/6212199","DOIUrl":null,"url":null,"abstract":"<p><p>Polymer-encapsulated nanocomposite has been proven to have ameliorative effects in the treatment of cancer. The focused objective of the present research is to fabricate polyethylene glycol (PEG)-based <i>Cassia fistula</i> flower selenium nanocomposite (CFF-SeNC). The fabricated CFF-SeNC was characterised using a UV-visible spectrophotometer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM)-energy dispersive x-ray (EDX), and x-ray diffractometer (XRD) analysis. The highest UV-visible absorption spectra were at 355 nm. The oval-shaped, less agglomerated nanocomposite with a rough surface was seen in the SEM results with the elemental composition of carbon, oxygen, and selenium. The XRD analysis results showed the crystalline form of CFF-SeNC. The potency of CFF-SeNC against pathogenic bacteria and fungi proved that CFF-SeNC is effective against the tested fungi <i>Candida albicans</i>. The antioxidative assays-DPPH, ABTS, and H<sub>2</sub>O<sub>2</sub> of CFF-SeNC-revealed the inhibition percent of 85.51% ± 0.79%, 90.53% ± 0.90%, and 84.87% ± 0.80% at maximum concentration (50 <i>μ</i>g/mL), respectively. The anti-inflammatory efficiency of CFF-SeNC was found to be 80.61% ± 0.87% and 87.78% ± 0.88% by egg albumin denaturation and HRBCs (human red blood cells) membrane stabilisation assay. The biocompatible nature of CFF-SeNC was tested by brine shrimp lethality activity, which proved that at 48 h, the minimal dose was not toxic; however, mild toxicity was shown at a higher dosage. The anticancer studies of CFF-SeNC in HepG2 cells were active in inhibiting 50% of cells (IC<sub>50</sub> value) at 27.30 <i>μ</i>g/mL. HepG2 cells depicted predominant morphological changes upon treatment with CFF-SeNC, whereas there was no alteration in <i>Vero</i> cells. The elaborative study on determining the phases of cell apoptosis was further analysed by fluorescence microscopy, cell cycle arrest, and Annexin V/propidium iodide staining through flow cytometric analysis. The outcome of current research has corroborated the enhanced therapeutical efficiency of PEG-encapsulated selenium nanocomposite with emphasis on the apoptotic effect in hepatocellular carcinoma (HepG2 cells).</p>","PeriodicalId":9007,"journal":{"name":"BioMed Research International","volume":"2025 ","pages":"6212199"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357778/pdf/","citationCount":"0","resultStr":"{\"title\":\"In Vitro Assessment of Apoptotic and Cell Cycle Arrest Analysis on HepG2 Cells by Polyethylene Glycol-Coupled Selenium Nanocomposite Fabricated From <i>Cassia fistula</i> Flowers.\",\"authors\":\"Senthamaraikannan Yasodha, Sundaram Vickram, Shanmugam Rajeshkumar, Hitesh Chopra, Tabarak Malik\",\"doi\":\"10.1155/bmri/6212199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polymer-encapsulated nanocomposite has been proven to have ameliorative effects in the treatment of cancer. The focused objective of the present research is to fabricate polyethylene glycol (PEG)-based <i>Cassia fistula</i> flower selenium nanocomposite (CFF-SeNC). The fabricated CFF-SeNC was characterised using a UV-visible spectrophotometer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM)-energy dispersive x-ray (EDX), and x-ray diffractometer (XRD) analysis. The highest UV-visible absorption spectra were at 355 nm. The oval-shaped, less agglomerated nanocomposite with a rough surface was seen in the SEM results with the elemental composition of carbon, oxygen, and selenium. The XRD analysis results showed the crystalline form of CFF-SeNC. The potency of CFF-SeNC against pathogenic bacteria and fungi proved that CFF-SeNC is effective against the tested fungi <i>Candida albicans</i>. The antioxidative assays-DPPH, ABTS, and H<sub>2</sub>O<sub>2</sub> of CFF-SeNC-revealed the inhibition percent of 85.51% ± 0.79%, 90.53% ± 0.90%, and 84.87% ± 0.80% at maximum concentration (50 <i>μ</i>g/mL), respectively. The anti-inflammatory efficiency of CFF-SeNC was found to be 80.61% ± 0.87% and 87.78% ± 0.88% by egg albumin denaturation and HRBCs (human red blood cells) membrane stabilisation assay. The biocompatible nature of CFF-SeNC was tested by brine shrimp lethality activity, which proved that at 48 h, the minimal dose was not toxic; however, mild toxicity was shown at a higher dosage. The anticancer studies of CFF-SeNC in HepG2 cells were active in inhibiting 50% of cells (IC<sub>50</sub> value) at 27.30 <i>μ</i>g/mL. HepG2 cells depicted predominant morphological changes upon treatment with CFF-SeNC, whereas there was no alteration in <i>Vero</i> cells. The elaborative study on determining the phases of cell apoptosis was further analysed by fluorescence microscopy, cell cycle arrest, and Annexin V/propidium iodide staining through flow cytometric analysis. The outcome of current research has corroborated the enhanced therapeutical efficiency of PEG-encapsulated selenium nanocomposite with emphasis on the apoptotic effect in hepatocellular carcinoma (HepG2 cells).</p>\",\"PeriodicalId\":9007,\"journal\":{\"name\":\"BioMed Research International\",\"volume\":\"2025 \",\"pages\":\"6212199\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357778/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioMed Research International\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/bmri/6212199\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMed Research International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/bmri/6212199","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
In Vitro Assessment of Apoptotic and Cell Cycle Arrest Analysis on HepG2 Cells by Polyethylene Glycol-Coupled Selenium Nanocomposite Fabricated From Cassia fistula Flowers.
Polymer-encapsulated nanocomposite has been proven to have ameliorative effects in the treatment of cancer. The focused objective of the present research is to fabricate polyethylene glycol (PEG)-based Cassia fistula flower selenium nanocomposite (CFF-SeNC). The fabricated CFF-SeNC was characterised using a UV-visible spectrophotometer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM)-energy dispersive x-ray (EDX), and x-ray diffractometer (XRD) analysis. The highest UV-visible absorption spectra were at 355 nm. The oval-shaped, less agglomerated nanocomposite with a rough surface was seen in the SEM results with the elemental composition of carbon, oxygen, and selenium. The XRD analysis results showed the crystalline form of CFF-SeNC. The potency of CFF-SeNC against pathogenic bacteria and fungi proved that CFF-SeNC is effective against the tested fungi Candida albicans. The antioxidative assays-DPPH, ABTS, and H2O2 of CFF-SeNC-revealed the inhibition percent of 85.51% ± 0.79%, 90.53% ± 0.90%, and 84.87% ± 0.80% at maximum concentration (50 μg/mL), respectively. The anti-inflammatory efficiency of CFF-SeNC was found to be 80.61% ± 0.87% and 87.78% ± 0.88% by egg albumin denaturation and HRBCs (human red blood cells) membrane stabilisation assay. The biocompatible nature of CFF-SeNC was tested by brine shrimp lethality activity, which proved that at 48 h, the minimal dose was not toxic; however, mild toxicity was shown at a higher dosage. The anticancer studies of CFF-SeNC in HepG2 cells were active in inhibiting 50% of cells (IC50 value) at 27.30 μg/mL. HepG2 cells depicted predominant morphological changes upon treatment with CFF-SeNC, whereas there was no alteration in Vero cells. The elaborative study on determining the phases of cell apoptosis was further analysed by fluorescence microscopy, cell cycle arrest, and Annexin V/propidium iodide staining through flow cytometric analysis. The outcome of current research has corroborated the enhanced therapeutical efficiency of PEG-encapsulated selenium nanocomposite with emphasis on the apoptotic effect in hepatocellular carcinoma (HepG2 cells).
期刊介绍:
BioMed Research International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies covering a wide range of subjects in life sciences and medicine. The journal is divided into 55 subject areas.