Hespi:从植物标本室标本单中自动检测信息的管道。

IF 7.6 1区 生物学 Q1 BIOLOGY
BioScience Pub Date : 2025-07-17 eCollection Date: 2025-08-01 DOI:10.1093/biosci/biaf042
Robert Turnbull, Emily Fitzgerald, Karen M Thompson, Joanne L Birch
{"title":"Hespi:从植物标本室标本单中自动检测信息的管道。","authors":"Robert Turnbull, Emily Fitzgerald, Karen M Thompson, Joanne L Birch","doi":"10.1093/biosci/biaf042","DOIUrl":null,"url":null,"abstract":"<p><p>Specimen-associated biodiversity data are crucial for biological, environmental, and conservation sciences. A rate shift is needed to extract data from specimen images efficiently, moving beyond human-mediated transcription. We developed Hespi (for <i>herbarium specimen sheet pipeline</i>) using advanced computer vision techniques to extract authoritative data applicable for a range of research purposes from primary specimen labels on herbarium specimens. Hespi integrates two object detection models: one for detecting the components of the sheet and another for fields on the primary specimen label. It classifies labels as printed, typed, handwritten, or mixed and uses optical character recognition and handwritten text recognition for extraction. The text is then corrected against authoritative taxon databases and refined using a multimodal large language model. Hespi accurately detects and extracts text from specimen sheets across international herbaria, and its modular design allows users to train and integrate custom models.</p>","PeriodicalId":9003,"journal":{"name":"BioScience","volume":"75 8","pages":"637-648"},"PeriodicalIF":7.6000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12352312/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hespi: a pipeline for automatically detecting information from herbarium specimen sheets.\",\"authors\":\"Robert Turnbull, Emily Fitzgerald, Karen M Thompson, Joanne L Birch\",\"doi\":\"10.1093/biosci/biaf042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Specimen-associated biodiversity data are crucial for biological, environmental, and conservation sciences. A rate shift is needed to extract data from specimen images efficiently, moving beyond human-mediated transcription. We developed Hespi (for <i>herbarium specimen sheet pipeline</i>) using advanced computer vision techniques to extract authoritative data applicable for a range of research purposes from primary specimen labels on herbarium specimens. Hespi integrates two object detection models: one for detecting the components of the sheet and another for fields on the primary specimen label. It classifies labels as printed, typed, handwritten, or mixed and uses optical character recognition and handwritten text recognition for extraction. The text is then corrected against authoritative taxon databases and refined using a multimodal large language model. Hespi accurately detects and extracts text from specimen sheets across international herbaria, and its modular design allows users to train and integrate custom models.</p>\",\"PeriodicalId\":9003,\"journal\":{\"name\":\"BioScience\",\"volume\":\"75 8\",\"pages\":\"637-648\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12352312/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/biosci/biaf042\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biosci/biaf042","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

与标本相关的生物多样性数据对生物、环境和保护科学至关重要。速率转移需要有效地从标本图像中提取数据,超越人类介导的转录。我们使用先进的计算机视觉技术开发了Hespi(用于植物标本馆标本表管道),从植物标本馆标本的原始标本标签中提取适用于一系列研究目的的权威数据。Hespi集成了两个对象检测模型:一个用于检测薄片的组件,另一个用于检测主要样品标签上的字段。它将标签分类为打印、打字、手写或混合,并使用光学字符识别和手写文本识别进行提取。然后根据权威分类数据库对文本进行校正,并使用多模态大型语言模型对文本进行细化。Hespi准确地从国际植物标本馆的标本单中检测和提取文本,其模块化设计允许用户训练和集成定制模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hespi: a pipeline for automatically detecting information from herbarium specimen sheets.

Hespi: a pipeline for automatically detecting information from herbarium specimen sheets.

Hespi: a pipeline for automatically detecting information from herbarium specimen sheets.

Hespi: a pipeline for automatically detecting information from herbarium specimen sheets.

Specimen-associated biodiversity data are crucial for biological, environmental, and conservation sciences. A rate shift is needed to extract data from specimen images efficiently, moving beyond human-mediated transcription. We developed Hespi (for herbarium specimen sheet pipeline) using advanced computer vision techniques to extract authoritative data applicable for a range of research purposes from primary specimen labels on herbarium specimens. Hespi integrates two object detection models: one for detecting the components of the sheet and another for fields on the primary specimen label. It classifies labels as printed, typed, handwritten, or mixed and uses optical character recognition and handwritten text recognition for extraction. The text is then corrected against authoritative taxon databases and refined using a multimodal large language model. Hespi accurately detects and extracts text from specimen sheets across international herbaria, and its modular design allows users to train and integrate custom models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioScience
BioScience 生物-生物学
CiteScore
14.10
自引率
2.00%
发文量
109
审稿时长
3 months
期刊介绍: BioScience is a monthly journal that has been in publication since 1964. It provides readers with authoritative and current overviews of biological research. The journal is peer-reviewed and heavily cited, making it a reliable source for researchers, educators, and students. In addition to research articles, BioScience also covers topics such as biology education, public policy, history, and the fundamental principles of the biological sciences. This makes the content accessible to a wide range of readers. The journal includes professionally written feature articles that explore the latest advancements in biology. It also features discussions on professional issues, book reviews, news about the American Institute of Biological Sciences (AIBS), and columns on policy (Washington Watch) and education (Eye on Education).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信