{"title":"高维多研究多模态协变量增广广义因子模型。","authors":"Wei Liu, Qingzhi Zhong","doi":"10.1093/biomtc/ujaf107","DOIUrl":null,"url":null,"abstract":"<p><p>Latent factor models that integrate data from multiple sources/studies or modalities have garnered considerable attention across various disciplines. However, existing methods predominantly focus either on multi-study integration or multi-modality integration, rendering them insufficient for analyzing the diverse modalities measured across multiple studies. To address this limitation and cater to practical needs, we introduce a high-dimensional generalized factor model that seamlessly integrates multi-modality data from multiple studies, while also accommodating additional covariates. We conduct a thorough investigation of the identifiability conditions to enhance the model's interpretability. To tackle the complexity of high-dimensional nonlinear integration caused by 4 large latent random matrices, we utilize a variational lower bound to approximate the observed log-likelihood by employing a variational posterior distribution. By profiling the variational parameters, we establish the asymptotical properties of estimators for model parameters using M-estimation theory. Furthermore, we devise a computationally efficient variational expectation maximization (EM) algorithm to execute the estimation process and a criterion to determine the optimal number of both study-shared and study-specific factors. Extensive simulation studies and a real-world application show that the proposed method significantly outperforms existing methods in terms of estimation accuracy and computational efficiency.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-dimensional multi-study multi-modality covariate-augmented generalized factor model.\",\"authors\":\"Wei Liu, Qingzhi Zhong\",\"doi\":\"10.1093/biomtc/ujaf107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Latent factor models that integrate data from multiple sources/studies or modalities have garnered considerable attention across various disciplines. However, existing methods predominantly focus either on multi-study integration or multi-modality integration, rendering them insufficient for analyzing the diverse modalities measured across multiple studies. To address this limitation and cater to practical needs, we introduce a high-dimensional generalized factor model that seamlessly integrates multi-modality data from multiple studies, while also accommodating additional covariates. We conduct a thorough investigation of the identifiability conditions to enhance the model's interpretability. To tackle the complexity of high-dimensional nonlinear integration caused by 4 large latent random matrices, we utilize a variational lower bound to approximate the observed log-likelihood by employing a variational posterior distribution. By profiling the variational parameters, we establish the asymptotical properties of estimators for model parameters using M-estimation theory. Furthermore, we devise a computationally efficient variational expectation maximization (EM) algorithm to execute the estimation process and a criterion to determine the optimal number of both study-shared and study-specific factors. Extensive simulation studies and a real-world application show that the proposed method significantly outperforms existing methods in terms of estimation accuracy and computational efficiency.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 3\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf107\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf107","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Latent factor models that integrate data from multiple sources/studies or modalities have garnered considerable attention across various disciplines. However, existing methods predominantly focus either on multi-study integration or multi-modality integration, rendering them insufficient for analyzing the diverse modalities measured across multiple studies. To address this limitation and cater to practical needs, we introduce a high-dimensional generalized factor model that seamlessly integrates multi-modality data from multiple studies, while also accommodating additional covariates. We conduct a thorough investigation of the identifiability conditions to enhance the model's interpretability. To tackle the complexity of high-dimensional nonlinear integration caused by 4 large latent random matrices, we utilize a variational lower bound to approximate the observed log-likelihood by employing a variational posterior distribution. By profiling the variational parameters, we establish the asymptotical properties of estimators for model parameters using M-estimation theory. Furthermore, we devise a computationally efficient variational expectation maximization (EM) algorithm to execute the estimation process and a criterion to determine the optimal number of both study-shared and study-specific factors. Extensive simulation studies and a real-world application show that the proposed method significantly outperforms existing methods in terms of estimation accuracy and computational efficiency.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.