可解释的深度学习为医疗放射性同位素生产解锁高保真度预测。

IF 1.8 3区 工程技术 Q3 CHEMISTRY, INORGANIC & NUCLEAR
Applied Radiation and Isotopes Pub Date : 2025-11-01 Epub Date: 2025-08-14 DOI:10.1016/j.apradiso.2025.112110
YanBang Tang
{"title":"可解释的深度学习为医疗放射性同位素生产解锁高保真度预测。","authors":"YanBang Tang","doi":"10.1016/j.apradiso.2025.112110","DOIUrl":null,"url":null,"abstract":"<p><p>The efficient and pure production of medical radioisotopes, indispensable for diagnostic imaging and targeted radiotherapy, critically depends on accurate nuclear reaction cross section data. However, traditional physics-based models face limitations from inherent uncertainties and sparse experimental data, hindering optimal production strategies. Here, we introduce a comprehensive framework leveraging Bayesian-optimized deep neural networks to predict (p,2n) reaction cross sections for the production of clinically vital radioisotopes-<sup>47</sup>Sc, <sup>111</sup>In, <sup>124</sup>I, and <sup>165</sup>Tm-with exceptional accuracy. Our models, trained and validated on evaluated data from the IAEA database, achieve a Pearson correlation coefficient R of 0.9997, significantly surpassing the performance of the TALYS-2.0 nuclear reaction code (R = 0.9783) using default parameters. Crucially, by integrating SHAP (SHapley Additive exPlanations) analysis, we provide unprecedented interpretability, elucidating the influence of projectile energy and nuclear structure features (notably neutron numbers of target and product nuclei) on cross-section predictions. This work demonstrates that data-driven, interpretable AI models can overcome long-standing challenges in nuclear data evaluation, offering a powerful tool to optimize cyclotron-based radioisotope production and advance nuclear medicine.</p>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"225 ","pages":"112110"},"PeriodicalIF":1.8000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretable deep learning unlocks high-fidelity prediction for medical radioisotope production.\",\"authors\":\"YanBang Tang\",\"doi\":\"10.1016/j.apradiso.2025.112110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The efficient and pure production of medical radioisotopes, indispensable for diagnostic imaging and targeted radiotherapy, critically depends on accurate nuclear reaction cross section data. However, traditional physics-based models face limitations from inherent uncertainties and sparse experimental data, hindering optimal production strategies. Here, we introduce a comprehensive framework leveraging Bayesian-optimized deep neural networks to predict (p,2n) reaction cross sections for the production of clinically vital radioisotopes-<sup>47</sup>Sc, <sup>111</sup>In, <sup>124</sup>I, and <sup>165</sup>Tm-with exceptional accuracy. Our models, trained and validated on evaluated data from the IAEA database, achieve a Pearson correlation coefficient R of 0.9997, significantly surpassing the performance of the TALYS-2.0 nuclear reaction code (R = 0.9783) using default parameters. Crucially, by integrating SHAP (SHapley Additive exPlanations) analysis, we provide unprecedented interpretability, elucidating the influence of projectile energy and nuclear structure features (notably neutron numbers of target and product nuclei) on cross-section predictions. This work demonstrates that data-driven, interpretable AI models can overcome long-standing challenges in nuclear data evaluation, offering a powerful tool to optimize cyclotron-based radioisotope production and advance nuclear medicine.</p>\",\"PeriodicalId\":8096,\"journal\":{\"name\":\"Applied Radiation and Isotopes\",\"volume\":\"225 \",\"pages\":\"112110\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Radiation and Isotopes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apradiso.2025.112110\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Radiation and Isotopes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.apradiso.2025.112110","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

诊断成像和靶向放射治疗必不可少的医用放射性同位素的高效和纯净生产,严重依赖于准确的核反应截面数据。然而,传统的基于物理的模型受到固有不确定性和稀疏实验数据的限制,阻碍了优化生产策略。在这里,我们引入了一个综合框架,利用贝叶斯优化的深度神经网络来预测(p,2n)反应截面,以非常精确的方式产生临床重要的放射性同位素- 47sc, 111In, 124I和165tm。我们的模型在来自IAEA数据库的评估数据上进行了训练和验证,Pearson相关系数R为0.9997,显著优于使用默认参数的TALYS-2.0核反应代码(R = 0.9783)的性能。至关重要的是,通过整合SHAP (SHapley加性解释)分析,我们提供了前所未有的可解释性,阐明了弹丸能量和核结构特征(特别是靶核和产物核的中子数)对截面预测的影响。这项工作表明,数据驱动的、可解释的人工智能模型可以克服核数据评估中长期存在的挑战,为优化基于回旋加速器的放射性同位素生产和推进核医学提供了强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpretable deep learning unlocks high-fidelity prediction for medical radioisotope production.

The efficient and pure production of medical radioisotopes, indispensable for diagnostic imaging and targeted radiotherapy, critically depends on accurate nuclear reaction cross section data. However, traditional physics-based models face limitations from inherent uncertainties and sparse experimental data, hindering optimal production strategies. Here, we introduce a comprehensive framework leveraging Bayesian-optimized deep neural networks to predict (p,2n) reaction cross sections for the production of clinically vital radioisotopes-47Sc, 111In, 124I, and 165Tm-with exceptional accuracy. Our models, trained and validated on evaluated data from the IAEA database, achieve a Pearson correlation coefficient R of 0.9997, significantly surpassing the performance of the TALYS-2.0 nuclear reaction code (R = 0.9783) using default parameters. Crucially, by integrating SHAP (SHapley Additive exPlanations) analysis, we provide unprecedented interpretability, elucidating the influence of projectile energy and nuclear structure features (notably neutron numbers of target and product nuclei) on cross-section predictions. This work demonstrates that data-driven, interpretable AI models can overcome long-standing challenges in nuclear data evaluation, offering a powerful tool to optimize cyclotron-based radioisotope production and advance nuclear medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Radiation and Isotopes
Applied Radiation and Isotopes 工程技术-核科学技术
CiteScore
3.00
自引率
12.50%
发文量
406
审稿时长
13.5 months
期刊介绍: Applied Radiation and Isotopes provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and peaceful application of nuclear, radiation and radionuclide techniques in chemistry, physics, biochemistry, biology, medicine, security, engineering and in the earth, planetary and environmental sciences, all including dosimetry. Nuclear techniques are defined in the broadest sense and both experimental and theoretical papers are welcome. They include the development and use of α- and β-particles, X-rays and γ-rays, neutrons and other nuclear particles and radiations from all sources, including radionuclides, synchrotron sources, cyclotrons and reactors and from the natural environment. The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. Papers dealing with radiation processing, i.e., where radiation is used to bring about a biological, chemical or physical change in a material, should be directed to our sister journal Radiation Physics and Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信