先进柔性电子用半纤维素水溶性摩擦电纳米发电机。

IF 4.3 3区 化学 Q2 POLYMER SCIENCE
Lujie Wang, Xin Li, Yang Liu, Dong Lv, Chenglong Fu, Yehan Tao, Jinwen Hu, Zhenglei Jia, Jian Du, Haisong Wang
{"title":"先进柔性电子用半纤维素水溶性摩擦电纳米发电机。","authors":"Lujie Wang, Xin Li, Yang Liu, Dong Lv, Chenglong Fu, Yehan Tao, Jinwen Hu, Zhenglei Jia, Jian Du, Haisong Wang","doi":"10.1002/marc.202500340","DOIUrl":null,"url":null,"abstract":"<p><p>Biodegradable hemicellulose has been recognized as a promising triboelectric positive material due to its polyhydroxy structure. However, its inherently low triboelectric polarity severely limits its application in flexible wearable sensor systems. Herein, a hemicellulose-based composite film with excellent triboelectric properties was designed. Acrylamide (AM) monomers were grafted onto the hemicellulose backbone through a free radical graft copolymerization reaction. The amino group's strong electron-donating capability enhanced molecular polarization. Synergistic dynamic hydrogen/covalent bonding networks improved mechanical properties (strength, fatigue/thermal expansion resistance) through optimized cohesive energy, thereby boosting charge transfer and significantly enhancing macroscopic triboelectric performance. The HC/PAM<sub>4</sub>-based TENG delivers 81 V open-circuit voltage, 6.6 µA short-circuit current, 10 nC transferred charge, and 49 mW/m<sup>2</sup> peak power density at 1 Hz. Self-powered, the device monitored human motion by analyzing distinct signal waveforms for precise recognition. The HC/PAM4 film retains recyclability through water dissolution-drying cycles via dynamic hydrogen bonds, maintaining stable properties over 5 cycles: water solubility time (140 ± 2 s), tensile strength (10 ± 2 MPa), and elongation at break variation (<5%) under ambient conditions, demonstrating excellent long-term stability. Our finding offers an effective strategy for enhancing hemicellulose-based triboelectric materials, enabling wearable self-powered sensors toward eco-friendly intelligent devices.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e00340"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hemicellulose-Based Water-Soluble Triboelectric Nanogenerator for Advanced Flexible Electronics.\",\"authors\":\"Lujie Wang, Xin Li, Yang Liu, Dong Lv, Chenglong Fu, Yehan Tao, Jinwen Hu, Zhenglei Jia, Jian Du, Haisong Wang\",\"doi\":\"10.1002/marc.202500340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biodegradable hemicellulose has been recognized as a promising triboelectric positive material due to its polyhydroxy structure. However, its inherently low triboelectric polarity severely limits its application in flexible wearable sensor systems. Herein, a hemicellulose-based composite film with excellent triboelectric properties was designed. Acrylamide (AM) monomers were grafted onto the hemicellulose backbone through a free radical graft copolymerization reaction. The amino group's strong electron-donating capability enhanced molecular polarization. Synergistic dynamic hydrogen/covalent bonding networks improved mechanical properties (strength, fatigue/thermal expansion resistance) through optimized cohesive energy, thereby boosting charge transfer and significantly enhancing macroscopic triboelectric performance. The HC/PAM<sub>4</sub>-based TENG delivers 81 V open-circuit voltage, 6.6 µA short-circuit current, 10 nC transferred charge, and 49 mW/m<sup>2</sup> peak power density at 1 Hz. Self-powered, the device monitored human motion by analyzing distinct signal waveforms for precise recognition. The HC/PAM4 film retains recyclability through water dissolution-drying cycles via dynamic hydrogen bonds, maintaining stable properties over 5 cycles: water solubility time (140 ± 2 s), tensile strength (10 ± 2 MPa), and elongation at break variation (<5%) under ambient conditions, demonstrating excellent long-term stability. Our finding offers an effective strategy for enhancing hemicellulose-based triboelectric materials, enabling wearable self-powered sensors toward eco-friendly intelligent devices.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e00340\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202500340\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202500340","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

可生物降解半纤维素由于其多羟基结构而被认为是一种很有前途的摩擦电正极材料。然而,其固有的低摩擦电极性严重限制了其在柔性可穿戴传感器系统中的应用。本文设计了一种具有优异摩擦电性能的半纤维素基复合薄膜。通过自由基接枝共聚反应将丙烯酰胺(AM)单体接枝到半纤维素骨架上。氨基较强的供电子能力增强了分子极化。协同动态氢键/共价键网络通过优化结合能提高了材料的力学性能(强度、抗疲劳/热膨胀),从而促进了电荷传递,显著提高了宏观摩擦电性能。基于HC/ pam4的TENG可提供81 V开路电压、6.6µA短路电流、10 nC转移电荷和49 mW/m2的1hz峰值功率密度。该设备自供电,通过分析不同的信号波形来精确识别人体运动。HC/PAM4薄膜通过动态氢键通过水溶解-干燥循环保持可回收性,在5个循环中保持稳定的性能:水溶性时间(140±2秒)、抗拉强度(10±2 MPa)和断裂伸长率(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hemicellulose-Based Water-Soluble Triboelectric Nanogenerator for Advanced Flexible Electronics.

Biodegradable hemicellulose has been recognized as a promising triboelectric positive material due to its polyhydroxy structure. However, its inherently low triboelectric polarity severely limits its application in flexible wearable sensor systems. Herein, a hemicellulose-based composite film with excellent triboelectric properties was designed. Acrylamide (AM) monomers were grafted onto the hemicellulose backbone through a free radical graft copolymerization reaction. The amino group's strong electron-donating capability enhanced molecular polarization. Synergistic dynamic hydrogen/covalent bonding networks improved mechanical properties (strength, fatigue/thermal expansion resistance) through optimized cohesive energy, thereby boosting charge transfer and significantly enhancing macroscopic triboelectric performance. The HC/PAM4-based TENG delivers 81 V open-circuit voltage, 6.6 µA short-circuit current, 10 nC transferred charge, and 49 mW/m2 peak power density at 1 Hz. Self-powered, the device monitored human motion by analyzing distinct signal waveforms for precise recognition. The HC/PAM4 film retains recyclability through water dissolution-drying cycles via dynamic hydrogen bonds, maintaining stable properties over 5 cycles: water solubility time (140 ± 2 s), tensile strength (10 ± 2 MPa), and elongation at break variation (<5%) under ambient conditions, demonstrating excellent long-term stability. Our finding offers an effective strategy for enhancing hemicellulose-based triboelectric materials, enabling wearable self-powered sensors toward eco-friendly intelligent devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信