Jihyeon Lee, Seunghwan Sim, Yinglan Jin, Hyejun Park, Eun Young Byeon, Su Jin Kim, Sujin Yun, Hye Eun Lee, Da Un Jeong, Jung Min Suh, In Hye Lee, Ho-Young Lee, Yongseok Choi, Yun Soo Bae
{"title":"NADPH氧化酶抑制通过减轻阿尔茨海默病的tau病和神经炎症促进脑恢复力。","authors":"Jihyeon Lee, Seunghwan Sim, Yinglan Jin, Hyejun Park, Eun Young Byeon, Su Jin Kim, Sujin Yun, Hye Eun Lee, Da Un Jeong, Jung Min Suh, In Hye Lee, Ho-Young Lee, Yongseok Choi, Yun Soo Bae","doi":"10.1002/advs.202505495","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) associates closely associated with the activation of NADPH oxidase (Nox) isozymes. CRB-2131, a novel oxadiazole derivative, is identified as a potently suppresses Nox isozymes. It inhibits reactive oxygen species production (ROS) by hippocampal neuronal and microglial cells and reduces microglial activation. Prophylactic (starting at 3.5 months of age) and therapeutic (starting at 6 months of age) oral administration with CRB-2131 for 10 weeks in 5XFAD mice reduced hippocampal superoxide levels, lipid peroxidation, Tau phosphorylation, and neuroinflammation. Prophylactic and therapeutic CRB-2131 treatment of 5XFAD mice restored their impaired cognition as shown by the novel-object recognition, Y-maze, and Morris water-maze tests. CRB-2131 treatment increased mature neurons, reduced apoptotic mature neurons, and elevated immature neurons in the hippocampus. Positron-emission tomography/computed-tomography imaging confirmed that CRB-2131 stimulated neuronal regeneration. CRB-2131 suppresses brain oxidation, tauopathy, and neuroinflammation, thereby preventing mature neuron death and promoting neuron regeneration. Ultimately, this fosters a resilient brain and protects cognition.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e05495"},"PeriodicalIF":14.1000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NADPH Oxidase Inhibition Promotes Brain Resilience by Attenuating Tauopathy and Neuroinflammation in Alzheimer's Disease.\",\"authors\":\"Jihyeon Lee, Seunghwan Sim, Yinglan Jin, Hyejun Park, Eun Young Byeon, Su Jin Kim, Sujin Yun, Hye Eun Lee, Da Un Jeong, Jung Min Suh, In Hye Lee, Ho-Young Lee, Yongseok Choi, Yun Soo Bae\",\"doi\":\"10.1002/advs.202505495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) associates closely associated with the activation of NADPH oxidase (Nox) isozymes. CRB-2131, a novel oxadiazole derivative, is identified as a potently suppresses Nox isozymes. It inhibits reactive oxygen species production (ROS) by hippocampal neuronal and microglial cells and reduces microglial activation. Prophylactic (starting at 3.5 months of age) and therapeutic (starting at 6 months of age) oral administration with CRB-2131 for 10 weeks in 5XFAD mice reduced hippocampal superoxide levels, lipid peroxidation, Tau phosphorylation, and neuroinflammation. Prophylactic and therapeutic CRB-2131 treatment of 5XFAD mice restored their impaired cognition as shown by the novel-object recognition, Y-maze, and Morris water-maze tests. CRB-2131 treatment increased mature neurons, reduced apoptotic mature neurons, and elevated immature neurons in the hippocampus. Positron-emission tomography/computed-tomography imaging confirmed that CRB-2131 stimulated neuronal regeneration. CRB-2131 suppresses brain oxidation, tauopathy, and neuroinflammation, thereby preventing mature neuron death and promoting neuron regeneration. Ultimately, this fosters a resilient brain and protects cognition.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e05495\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202505495\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202505495","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
NADPH Oxidase Inhibition Promotes Brain Resilience by Attenuating Tauopathy and Neuroinflammation in Alzheimer's Disease.
Alzheimer's disease (AD) associates closely associated with the activation of NADPH oxidase (Nox) isozymes. CRB-2131, a novel oxadiazole derivative, is identified as a potently suppresses Nox isozymes. It inhibits reactive oxygen species production (ROS) by hippocampal neuronal and microglial cells and reduces microglial activation. Prophylactic (starting at 3.5 months of age) and therapeutic (starting at 6 months of age) oral administration with CRB-2131 for 10 weeks in 5XFAD mice reduced hippocampal superoxide levels, lipid peroxidation, Tau phosphorylation, and neuroinflammation. Prophylactic and therapeutic CRB-2131 treatment of 5XFAD mice restored their impaired cognition as shown by the novel-object recognition, Y-maze, and Morris water-maze tests. CRB-2131 treatment increased mature neurons, reduced apoptotic mature neurons, and elevated immature neurons in the hippocampus. Positron-emission tomography/computed-tomography imaging confirmed that CRB-2131 stimulated neuronal regeneration. CRB-2131 suppresses brain oxidation, tauopathy, and neuroinflammation, thereby preventing mature neuron death and promoting neuron regeneration. Ultimately, this fosters a resilient brain and protects cognition.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.