室温下可扩展范德华铁磁体的亚纳秒无场开关。

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ao Du, Weiran Xie, Tianxiao Nie, Shilei Ding, Kewen Shi, Xinran Wang, Mingxing Wu, Runyu Zhao, Renyou Xu, Daoqian Zhu, Jie Zhang, Pietro Gambardella, Weisheng Zhao
{"title":"室温下可扩展范德华铁磁体的亚纳秒无场开关。","authors":"Ao Du, Weiran Xie, Tianxiao Nie, Shilei Ding, Kewen Shi, Xinran Wang, Mingxing Wu, Runyu Zhao, Renyou Xu, Daoqian Zhu, Jie Zhang, Pietro Gambardella, Weisheng Zhao","doi":"10.1002/adma.202505190","DOIUrl":null,"url":null,"abstract":"<p><p>Electrical manipulation of magnetism in 2D van der Waals (vdW) ferromagnet (FM) holds promise for next-generation spintronic devices. Investigating field-free, ultrafast switching at room temperature in wafer-scalable vdW heterostructures can advance the development of faster memories and enhance the understanding of magnetization switching mechanisms in 2D FMs. In this study, field-free, room temperature spin-orbit torque (SOT) switching at subnanosecond timescales in a wafer-scalable Fe<sub>3</sub>GaTe<sub>2</sub>/Pt heterostructure by epitaxial growth engineering is demonstrated. The introduction of a variable concentration gradient of Fe is used to establish the coexistence of in-plane magnetic anisotropy (IMA) and perpendicular magnetic anisotropy (PMA) within the ferromagnetic layer. The field-free switching, driven by the SOT from Pt, is achieved by using the IMA component to break the in-plane symmetry during the switching process. This work paves the way for the integration of efficient 2D vdW materials in advanced spintronic devices and faster memory technologies.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e05190"},"PeriodicalIF":26.8000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subnanosecond Field-Free Switching of a Wafer-Scalable van der Waals Ferromagnet at Room Temperature.\",\"authors\":\"Ao Du, Weiran Xie, Tianxiao Nie, Shilei Ding, Kewen Shi, Xinran Wang, Mingxing Wu, Runyu Zhao, Renyou Xu, Daoqian Zhu, Jie Zhang, Pietro Gambardella, Weisheng Zhao\",\"doi\":\"10.1002/adma.202505190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrical manipulation of magnetism in 2D van der Waals (vdW) ferromagnet (FM) holds promise for next-generation spintronic devices. Investigating field-free, ultrafast switching at room temperature in wafer-scalable vdW heterostructures can advance the development of faster memories and enhance the understanding of magnetization switching mechanisms in 2D FMs. In this study, field-free, room temperature spin-orbit torque (SOT) switching at subnanosecond timescales in a wafer-scalable Fe<sub>3</sub>GaTe<sub>2</sub>/Pt heterostructure by epitaxial growth engineering is demonstrated. The introduction of a variable concentration gradient of Fe is used to establish the coexistence of in-plane magnetic anisotropy (IMA) and perpendicular magnetic anisotropy (PMA) within the ferromagnetic layer. The field-free switching, driven by the SOT from Pt, is achieved by using the IMA component to break the in-plane symmetry during the switching process. This work paves the way for the integration of efficient 2D vdW materials in advanced spintronic devices and faster memory technologies.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\" \",\"pages\":\"e05190\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202505190\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202505190","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维范德华(vdW)铁磁体(FM)中磁性的电操纵为下一代自旋电子器件带来了希望。研究晶圆可扩展vdW异质结构在室温下的无场超快开关可以促进更快存储器的发展,并增强对二维FMs中磁化开关机制的理解。在这项研究中,通过外延生长工程证明了Fe3GaTe2/Pt异质结构在亚纳秒时间尺度下的无场、室温自旋轨道转矩(SOT)开关。通过引入可变浓度梯度的铁,建立了铁磁层内面内磁各向异性(IMA)和垂直磁各向异性(PMA)共存的理论。由Pt的SOT驱动的无场开关是通过在开关过程中使用IMA元件打破面内对称性来实现的。这项工作为在先进的自旋电子器件和更快的存储技术中集成高效的2D vdW材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subnanosecond Field-Free Switching of a Wafer-Scalable van der Waals Ferromagnet at Room Temperature.

Electrical manipulation of magnetism in 2D van der Waals (vdW) ferromagnet (FM) holds promise for next-generation spintronic devices. Investigating field-free, ultrafast switching at room temperature in wafer-scalable vdW heterostructures can advance the development of faster memories and enhance the understanding of magnetization switching mechanisms in 2D FMs. In this study, field-free, room temperature spin-orbit torque (SOT) switching at subnanosecond timescales in a wafer-scalable Fe3GaTe2/Pt heterostructure by epitaxial growth engineering is demonstrated. The introduction of a variable concentration gradient of Fe is used to establish the coexistence of in-plane magnetic anisotropy (IMA) and perpendicular magnetic anisotropy (PMA) within the ferromagnetic layer. The field-free switching, driven by the SOT from Pt, is achieved by using the IMA component to break the in-plane symmetry during the switching process. This work paves the way for the integration of efficient 2D vdW materials in advanced spintronic devices and faster memory technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信