Ludovic Keiser, Loukas Stamoulis, Baptiste Georjon, Philippe Marmottant and Benjamin Dollet
{"title":"可渗透介质包围的微流体通道中的气泡去除:实验和预测模型。","authors":"Ludovic Keiser, Loukas Stamoulis, Baptiste Georjon, Philippe Marmottant and Benjamin Dollet","doi":"10.1039/D5LC00407A","DOIUrl":null,"url":null,"abstract":"<p >Controlling the removal of bubbles from channels is crucial in microfluidics, either to eliminate air pockets if they are unwanted, or in pumpless microfluidic applications where receding bubbles is a way to induce liquid flows. To provide a better physical understanding of air removal in microchannels, we study the dynamics of invasion of wetting liquids in dead-end microchannels surrounded by an air-permeable medium. Using polydimethylsiloxane (PDMS)-based devices, we demonstrate that gas permeation through the channel walls drives an exponential decay in trapped air length with time (in marked contrast with the so-called Lucas–Washburn law of imbibition in porous media), providing a straightforward route to bubble elimination. Systematic experiments varying channel width, height, and PDMS thickness reveal how geometric and material factors modulate the refilling timescale. A simple analytical model, coupling capillarity and gas diffusion, captures these results quantitatively. For this purpose, we introduce an explicit expression for the interfacial curvature in microchannels with heterogeneous wettability (<em>e.g.</em>, PDMS-on-glass). This framework offers practical guidelines for microfluidic engineers aiming to prevent or remove trapped bubbles without relying on active pumping.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 19","pages":" 5030-5042"},"PeriodicalIF":5.4000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lc/d5lc00407a?page=search","citationCount":"0","resultStr":"{\"title\":\"Bubble removal in microfluidic channels surrounded by gas-permeable media: experiments and a predictive model\",\"authors\":\"Ludovic Keiser, Loukas Stamoulis, Baptiste Georjon, Philippe Marmottant and Benjamin Dollet\",\"doi\":\"10.1039/D5LC00407A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Controlling the removal of bubbles from channels is crucial in microfluidics, either to eliminate air pockets if they are unwanted, or in pumpless microfluidic applications where receding bubbles is a way to induce liquid flows. To provide a better physical understanding of air removal in microchannels, we study the dynamics of invasion of wetting liquids in dead-end microchannels surrounded by an air-permeable medium. Using polydimethylsiloxane (PDMS)-based devices, we demonstrate that gas permeation through the channel walls drives an exponential decay in trapped air length with time (in marked contrast with the so-called Lucas–Washburn law of imbibition in porous media), providing a straightforward route to bubble elimination. Systematic experiments varying channel width, height, and PDMS thickness reveal how geometric and material factors modulate the refilling timescale. A simple analytical model, coupling capillarity and gas diffusion, captures these results quantitatively. For this purpose, we introduce an explicit expression for the interfacial curvature in microchannels with heterogeneous wettability (<em>e.g.</em>, PDMS-on-glass). This framework offers practical guidelines for microfluidic engineers aiming to prevent or remove trapped bubbles without relying on active pumping.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\" 19\",\"pages\":\" 5030-5042\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/lc/d5lc00407a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/lc/d5lc00407a\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lc/d5lc00407a","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Bubble removal in microfluidic channels surrounded by gas-permeable media: experiments and a predictive model
Controlling the removal of bubbles from channels is crucial in microfluidics, either to eliminate air pockets if they are unwanted, or in pumpless microfluidic applications where receding bubbles is a way to induce liquid flows. To provide a better physical understanding of air removal in microchannels, we study the dynamics of invasion of wetting liquids in dead-end microchannels surrounded by an air-permeable medium. Using polydimethylsiloxane (PDMS)-based devices, we demonstrate that gas permeation through the channel walls drives an exponential decay in trapped air length with time (in marked contrast with the so-called Lucas–Washburn law of imbibition in porous media), providing a straightforward route to bubble elimination. Systematic experiments varying channel width, height, and PDMS thickness reveal how geometric and material factors modulate the refilling timescale. A simple analytical model, coupling capillarity and gas diffusion, captures these results quantitatively. For this purpose, we introduce an explicit expression for the interfacial curvature in microchannels with heterogeneous wettability (e.g., PDMS-on-glass). This framework offers practical guidelines for microfluidic engineers aiming to prevent or remove trapped bubbles without relying on active pumping.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.