横向配位硫修饰电荷不对称Cu-Ru双原子催化剂高效稳定的电化学还原硝态氮。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-08-17 DOI:10.1021/acsnano.5c08601
Yuanbo Yin, Liping Wang, Huishan Shang, Xilin Zhang*, Wenxing Chen* and Xiaoxin Zou*, 
{"title":"横向配位硫修饰电荷不对称Cu-Ru双原子催化剂高效稳定的电化学还原硝态氮。","authors":"Yuanbo Yin,&nbsp;Liping Wang,&nbsp;Huishan Shang,&nbsp;Xilin Zhang*,&nbsp;Wenxing Chen* and Xiaoxin Zou*,&nbsp;","doi":"10.1021/acsnano.5c08601","DOIUrl":null,"url":null,"abstract":"<p >Double-atom catalysts (DACs) with asymmetric coordination are crucial for enhancing the benefits of electrochemical reduction of nitrate (NO<sub>3</sub><sup>–</sup>) to ammonia (NH<sub>3</sub>) and advancing sustainable development; however, the rational design of DACs is still challenging. In this study, we synthesized atomically dispersed catalysts with lateral coordination sulfur-modified Cu–Ru sites (named N<sub>2</sub>S<sub>1</sub>Cu-RuN<sub>3</sub>/SNC). The abundant defects and low-electronegativity heteroatoms in the carbon-based framework endow the asymmetric local structure of N<sub>2</sub>S<sub>1</sub>Cu-RuN<sub>3</sub> at the atomic level, which is confirmed by aberration-corrected electron microscopy and X-ray absorption spectroscopy (XAS). In electrocatalytic nitrate reduction, the N<sub>2</sub>S<sub>1</sub>Cu-RuN<sub>3</sub>/SNC shows a Faraday efficiency of 98.2% at −0.6 V versus reversible hydrogen electrode (RHE). Benefiting from the charge tuning effect between the metal site and the lateral coordination sulfur atoms, the ammonia yield reaches 0.02919 mmol cm<sup>–2</sup> h<sup>–1</sup>. Additionally, <i>in situ</i> XAS and density functional theory (DFT) calculations reveal that Cu–Ru active sites in the asymmetric N<sub>2</sub>S<sub>1</sub>Cu-RuN<sub>3</sub>/SNC structure exhibit synergistic effects, modulating the adsorption of intermediates, lowering the energy barrier of key reaction steps, and enhancing the selectivity and yield of ammonia. This asymmetric bimetallic atomic catalyst facilitates deeper exploration of the precise synthesis and property modulation of atomic-scale materials.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 33","pages":"30338–30348"},"PeriodicalIF":16.0000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lateral Coordination Sulfur-Modified Charge Asymmetry Cu–Ru Diatomic Catalyst for Efficient and Stable Electrochemical Nitrate Reduction to Ammonia\",\"authors\":\"Yuanbo Yin,&nbsp;Liping Wang,&nbsp;Huishan Shang,&nbsp;Xilin Zhang*,&nbsp;Wenxing Chen* and Xiaoxin Zou*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c08601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Double-atom catalysts (DACs) with asymmetric coordination are crucial for enhancing the benefits of electrochemical reduction of nitrate (NO<sub>3</sub><sup>–</sup>) to ammonia (NH<sub>3</sub>) and advancing sustainable development; however, the rational design of DACs is still challenging. In this study, we synthesized atomically dispersed catalysts with lateral coordination sulfur-modified Cu–Ru sites (named N<sub>2</sub>S<sub>1</sub>Cu-RuN<sub>3</sub>/SNC). The abundant defects and low-electronegativity heteroatoms in the carbon-based framework endow the asymmetric local structure of N<sub>2</sub>S<sub>1</sub>Cu-RuN<sub>3</sub> at the atomic level, which is confirmed by aberration-corrected electron microscopy and X-ray absorption spectroscopy (XAS). In electrocatalytic nitrate reduction, the N<sub>2</sub>S<sub>1</sub>Cu-RuN<sub>3</sub>/SNC shows a Faraday efficiency of 98.2% at −0.6 V versus reversible hydrogen electrode (RHE). Benefiting from the charge tuning effect between the metal site and the lateral coordination sulfur atoms, the ammonia yield reaches 0.02919 mmol cm<sup>–2</sup> h<sup>–1</sup>. Additionally, <i>in situ</i> XAS and density functional theory (DFT) calculations reveal that Cu–Ru active sites in the asymmetric N<sub>2</sub>S<sub>1</sub>Cu-RuN<sub>3</sub>/SNC structure exhibit synergistic effects, modulating the adsorption of intermediates, lowering the energy barrier of key reaction steps, and enhancing the selectivity and yield of ammonia. This asymmetric bimetallic atomic catalyst facilitates deeper exploration of the precise synthesis and property modulation of atomic-scale materials.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 33\",\"pages\":\"30338–30348\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c08601\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c08601","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有不对称配位的双原子催化剂(dac)对提高硝态氮(NO3-)电化学还原成氨(NH3)的效益和促进可持续发展至关重要。然而,dac的合理设计仍然具有挑战性。在这项研究中,我们合成了具有横向配位硫修饰Cu-Ru位点的原子分散催化剂(命名为N2S1Cu-RuN3/SNC)。碳基骨架中丰富的缺陷和低电负性杂原子赋予了N2S1Cu-RuN3在原子水平上的不对称局域结构,通过像差校正电镜和x射线吸收光谱(XAS)证实了这一点。在电催化硝酸还原中,N2S1Cu-RuN3/SNC与可逆氢电极(RHE)相比,在-0.6 V下的法拉第效率为98.2%。得益于金属位与侧配位硫原子之间的电荷调谐效应,氨收率达到0.02919 mmol cm-2 h-1。此外,原位XAS和密度泛函数理论(DFT)计算结果表明,不对称N2S1Cu-RuN3/SNC结构中的Cu-Ru活性位点表现出协同效应,调节中间体的吸附,降低关键反应步骤的能垒,提高氨的选择性和产率。这种不对称双金属原子催化剂有助于更深入地探索原子尺度材料的精确合成和性质调制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lateral Coordination Sulfur-Modified Charge Asymmetry Cu–Ru Diatomic Catalyst for Efficient and Stable Electrochemical Nitrate Reduction to Ammonia

Lateral Coordination Sulfur-Modified Charge Asymmetry Cu–Ru Diatomic Catalyst for Efficient and Stable Electrochemical Nitrate Reduction to Ammonia

Double-atom catalysts (DACs) with asymmetric coordination are crucial for enhancing the benefits of electrochemical reduction of nitrate (NO3) to ammonia (NH3) and advancing sustainable development; however, the rational design of DACs is still challenging. In this study, we synthesized atomically dispersed catalysts with lateral coordination sulfur-modified Cu–Ru sites (named N2S1Cu-RuN3/SNC). The abundant defects and low-electronegativity heteroatoms in the carbon-based framework endow the asymmetric local structure of N2S1Cu-RuN3 at the atomic level, which is confirmed by aberration-corrected electron microscopy and X-ray absorption spectroscopy (XAS). In electrocatalytic nitrate reduction, the N2S1Cu-RuN3/SNC shows a Faraday efficiency of 98.2% at −0.6 V versus reversible hydrogen electrode (RHE). Benefiting from the charge tuning effect between the metal site and the lateral coordination sulfur atoms, the ammonia yield reaches 0.02919 mmol cm–2 h–1. Additionally, in situ XAS and density functional theory (DFT) calculations reveal that Cu–Ru active sites in the asymmetric N2S1Cu-RuN3/SNC structure exhibit synergistic effects, modulating the adsorption of intermediates, lowering the energy barrier of key reaction steps, and enhancing the selectivity and yield of ammonia. This asymmetric bimetallic atomic catalyst facilitates deeper exploration of the precise synthesis and property modulation of atomic-scale materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信