协同氨基和羟基增强姜黄素碳点的sod样活性,改善结肠炎治疗。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yan Du, Xuehui Duan, Hanxiao Liu, Zhongjie Tang, Xu Li, Tianying Ren, Xinlei Chu, Yunsai Wang, Wei Xu, Hongliang Wang*, Yingyi Wang* and Yixuan Tang*, 
{"title":"协同氨基和羟基增强姜黄素碳点的sod样活性,改善结肠炎治疗。","authors":"Yan Du,&nbsp;Xuehui Duan,&nbsp;Hanxiao Liu,&nbsp;Zhongjie Tang,&nbsp;Xu Li,&nbsp;Tianying Ren,&nbsp;Xinlei Chu,&nbsp;Yunsai Wang,&nbsp;Wei Xu,&nbsp;Hongliang Wang*,&nbsp;Yingyi Wang* and Yixuan Tang*,&nbsp;","doi":"10.1021/acsami.5c11952","DOIUrl":null,"url":null,"abstract":"<p >Inflammatory bowel disease (IBD) is a globally prevalent inflammatory disorder with limited therapeutic options due to efficacy-safety trade-offs. Herein, we rationally designed polyethylenimine (PEI)-functionalized curcumin-derived carbon dots (cu@CDs-po) as a multifunctional nanotherapeutic agent for colitis management. Combined experimental and computational analyses revealed that the synergistic interplay between surface-engineered amino and hydroxyl groups significantly enhanced the superoxide dismutase (SOD)-like activity of cu@CDs-po by 5.51-fold compared to unmodified cu@CDs, enabling efficient reactive oxygen species (ROS) scavenging and anti-inflammatory effects. PEI modification further improved cellular uptake and intestinal targeting. In a murine dextran sulfate sodium (DSS)-induced colitis model, cu@CDs-po effectively alleviated colon injury, restored intestinal barrier integrity, suppressed pro-inflammatory cytokines, and remodeled the immune microenvironment through T-cell suppression and M2 macrophage/Treg polarization. Critically, 16S rDNA sequencing revealed that cu@CDs-po induced targeted gut microbiota remodeling by restoring the Firmicutes/Bacteroidota ratio, suppressing pro-inflammatory Proteobacteria, enriching beneficial taxa such as <i>Lachnospiraceae</i>, and normalizing key commensals such as <i>Lachnospiraceae_NK4A136_group</i>. Functional analysis links these microbial shifts to enhanced metabolic and immune-related pathways. This study establishes a surface-chemistry-guided strategy for engineering catalytic carbon dots capable of simultaneously modulating oxidative stress, immune responses, and gut microbiota homeostasis, offering a promising and translatable paradigm for IBD nanomedicine.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 34","pages":"48075–48093"},"PeriodicalIF":8.2000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Amino and Hydroxyl Groups That Enhance SOD-Like Activity in Curcumin Carbon Dots for Improved Colitis Treatment\",\"authors\":\"Yan Du,&nbsp;Xuehui Duan,&nbsp;Hanxiao Liu,&nbsp;Zhongjie Tang,&nbsp;Xu Li,&nbsp;Tianying Ren,&nbsp;Xinlei Chu,&nbsp;Yunsai Wang,&nbsp;Wei Xu,&nbsp;Hongliang Wang*,&nbsp;Yingyi Wang* and Yixuan Tang*,&nbsp;\",\"doi\":\"10.1021/acsami.5c11952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Inflammatory bowel disease (IBD) is a globally prevalent inflammatory disorder with limited therapeutic options due to efficacy-safety trade-offs. Herein, we rationally designed polyethylenimine (PEI)-functionalized curcumin-derived carbon dots (cu@CDs-po) as a multifunctional nanotherapeutic agent for colitis management. Combined experimental and computational analyses revealed that the synergistic interplay between surface-engineered amino and hydroxyl groups significantly enhanced the superoxide dismutase (SOD)-like activity of cu@CDs-po by 5.51-fold compared to unmodified cu@CDs, enabling efficient reactive oxygen species (ROS) scavenging and anti-inflammatory effects. PEI modification further improved cellular uptake and intestinal targeting. In a murine dextran sulfate sodium (DSS)-induced colitis model, cu@CDs-po effectively alleviated colon injury, restored intestinal barrier integrity, suppressed pro-inflammatory cytokines, and remodeled the immune microenvironment through T-cell suppression and M2 macrophage/Treg polarization. Critically, 16S rDNA sequencing revealed that cu@CDs-po induced targeted gut microbiota remodeling by restoring the Firmicutes/Bacteroidota ratio, suppressing pro-inflammatory Proteobacteria, enriching beneficial taxa such as <i>Lachnospiraceae</i>, and normalizing key commensals such as <i>Lachnospiraceae_NK4A136_group</i>. Functional analysis links these microbial shifts to enhanced metabolic and immune-related pathways. This study establishes a surface-chemistry-guided strategy for engineering catalytic carbon dots capable of simultaneously modulating oxidative stress, immune responses, and gut microbiota homeostasis, offering a promising and translatable paradigm for IBD nanomedicine.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 34\",\"pages\":\"48075–48093\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c11952\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c11952","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

炎症性肠病(IBD)是一种全球流行的炎症性疾病,由于有效性和安全性的权衡,治疗选择有限。在此,我们合理设计了聚乙烯亚胺(PEI)功能化姜黄素衍生碳点(cu@CDs-po)作为一种多功能纳米治疗剂用于治疗结肠炎。结合实验和计算分析表明,与未经修饰的cu@CDs相比,表面工程氨基和羟基之间的协同相互作用显著提高了cu@CDs-po的超氧化物歧化酶(SOD)样活性,提高了5.51倍,从而实现了高效的活性氧(ROS)清除和抗炎作用。PEI修饰进一步改善了细胞摄取和肠道靶向。在小鼠DSS诱导的结肠炎模型中,cu@CDs-po通过抑制t细胞和M2巨噬细胞/Treg极化,有效减轻结肠损伤,恢复肠屏障完整性,抑制促炎细胞因子,重塑免疫微环境。重要的是,16S rDNA测序显示cu@CDs-po通过恢复厚壁菌门/拟杆菌门比例、抑制促炎变形菌门、丰富有益类群(如Lachnospiraceae)和正常化关键共生体(如Lachnospiraceae_NK4A136_group)诱导靶向肠道微生物群重塑。功能分析将这些微生物转变与增强的代谢和免疫相关途径联系起来。本研究建立了一种表面化学指导的工程催化碳点策略,能够同时调节氧化应激、免疫反应和肠道微生物群稳态,为IBD纳米药物提供了一个有前途的可翻译范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic Amino and Hydroxyl Groups That Enhance SOD-Like Activity in Curcumin Carbon Dots for Improved Colitis Treatment

Synergistic Amino and Hydroxyl Groups That Enhance SOD-Like Activity in Curcumin Carbon Dots for Improved Colitis Treatment

Inflammatory bowel disease (IBD) is a globally prevalent inflammatory disorder with limited therapeutic options due to efficacy-safety trade-offs. Herein, we rationally designed polyethylenimine (PEI)-functionalized curcumin-derived carbon dots (cu@CDs-po) as a multifunctional nanotherapeutic agent for colitis management. Combined experimental and computational analyses revealed that the synergistic interplay between surface-engineered amino and hydroxyl groups significantly enhanced the superoxide dismutase (SOD)-like activity of cu@CDs-po by 5.51-fold compared to unmodified cu@CDs, enabling efficient reactive oxygen species (ROS) scavenging and anti-inflammatory effects. PEI modification further improved cellular uptake and intestinal targeting. In a murine dextran sulfate sodium (DSS)-induced colitis model, cu@CDs-po effectively alleviated colon injury, restored intestinal barrier integrity, suppressed pro-inflammatory cytokines, and remodeled the immune microenvironment through T-cell suppression and M2 macrophage/Treg polarization. Critically, 16S rDNA sequencing revealed that cu@CDs-po induced targeted gut microbiota remodeling by restoring the Firmicutes/Bacteroidota ratio, suppressing pro-inflammatory Proteobacteria, enriching beneficial taxa such as Lachnospiraceae, and normalizing key commensals such as Lachnospiraceae_NK4A136_group. Functional analysis links these microbial shifts to enhanced metabolic and immune-related pathways. This study establishes a surface-chemistry-guided strategy for engineering catalytic carbon dots capable of simultaneously modulating oxidative stress, immune responses, and gut microbiota homeostasis, offering a promising and translatable paradigm for IBD nanomedicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信