重新审视聚二甲基硅氧烷(PDMS)弹性体的热转变:用综合数据解决常见的误解

IF 4.6 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Saul Utrera-Barrios, Liyun Yu, Anne Ladegaard Skov
{"title":"重新审视聚二甲基硅氧烷(PDMS)弹性体的热转变:用综合数据解决常见的误解","authors":"Saul Utrera-Barrios,&nbsp;Liyun Yu,&nbsp;Anne Ladegaard Skov","doi":"10.1002/mame.202500075","DOIUrl":null,"url":null,"abstract":"<p>An important characteristic of silicone elastomers is their ability to maintain their properties over a wide temperature range. This results from the Si─O bond's high flexibility and thermal stability, causing a very low glass transition temperature (Tg) and a high degradation temperature (Td), respectively. However, other thermal transitions, such as crystallization (Tc), cold crystallization (Tcc), and melting (Tm), must also be considered to ensure the elastomers’ optimal performance and use. This study addresses the misconceptions surrounding the assignment of these transition temperatures for the most prevalent type of silicone elastomer, namely polydimethylsiloxane (PDMS) elastomers. The article focuses on rectifying these misunderstandings, particularly in the context of high-tech applications, including aerospace, automotive, coatings, and soft robotics. A diverse range of 15 types of silicones are meticulously analyzed, including elastomers, adhesives, and oils, using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). This study highlights these transition temperatures’ role in shaping silicone elastomers’ thermomechanical behavior and their significance for effective utilization in advanced applications.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202500075","citationCount":"0","resultStr":"{\"title\":\"Revisiting the Thermal Transitions of Polydimethylsiloxane (PDMS) Elastomers: Addressing Common Misconceptions with Comprehensive Data\",\"authors\":\"Saul Utrera-Barrios,&nbsp;Liyun Yu,&nbsp;Anne Ladegaard Skov\",\"doi\":\"10.1002/mame.202500075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An important characteristic of silicone elastomers is their ability to maintain their properties over a wide temperature range. This results from the Si─O bond's high flexibility and thermal stability, causing a very low glass transition temperature (Tg) and a high degradation temperature (Td), respectively. However, other thermal transitions, such as crystallization (Tc), cold crystallization (Tcc), and melting (Tm), must also be considered to ensure the elastomers’ optimal performance and use. This study addresses the misconceptions surrounding the assignment of these transition temperatures for the most prevalent type of silicone elastomer, namely polydimethylsiloxane (PDMS) elastomers. The article focuses on rectifying these misunderstandings, particularly in the context of high-tech applications, including aerospace, automotive, coatings, and soft robotics. A diverse range of 15 types of silicones are meticulously analyzed, including elastomers, adhesives, and oils, using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). This study highlights these transition temperatures’ role in shaping silicone elastomers’ thermomechanical behavior and their significance for effective utilization in advanced applications.</p>\",\"PeriodicalId\":18151,\"journal\":{\"name\":\"Macromolecular Materials and Engineering\",\"volume\":\"310 8\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202500075\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Materials and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202500075\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202500075","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有机硅弹性体的一个重要特性是它们在很宽的温度范围内保持其性能的能力。这是由于Si─O键的高柔韧性和热稳定性,分别导致非常低的玻璃化转变温度(Tg)和高降解温度(Td)。然而,其他热转变,如结晶(Tc),冷结晶(Tcc)和熔融(Tm),也必须考虑,以确保弹性体的最佳性能和使用。本研究解决了围绕最普遍类型的有机硅弹性体,即聚二甲基硅氧烷(PDMS)弹性体的这些转变温度分配的误解。本文的重点是纠正这些误解,特别是在高科技应用的背景下,包括航空航天、汽车、涂料和软机器人。使用差示扫描量热法(DSC)、动态力学分析(DMA)和热重分析(TGA),对15种不同类型的有机硅进行了细致的分析,包括弹性体、粘合剂和油。这项研究强调了这些转变温度在塑造有机硅弹性体的热力学行为中的作用,以及它们在高级应用中有效利用的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Revisiting the Thermal Transitions of Polydimethylsiloxane (PDMS) Elastomers: Addressing Common Misconceptions with Comprehensive Data

Revisiting the Thermal Transitions of Polydimethylsiloxane (PDMS) Elastomers: Addressing Common Misconceptions with Comprehensive Data

An important characteristic of silicone elastomers is their ability to maintain their properties over a wide temperature range. This results from the Si─O bond's high flexibility and thermal stability, causing a very low glass transition temperature (Tg) and a high degradation temperature (Td), respectively. However, other thermal transitions, such as crystallization (Tc), cold crystallization (Tcc), and melting (Tm), must also be considered to ensure the elastomers’ optimal performance and use. This study addresses the misconceptions surrounding the assignment of these transition temperatures for the most prevalent type of silicone elastomer, namely polydimethylsiloxane (PDMS) elastomers. The article focuses on rectifying these misunderstandings, particularly in the context of high-tech applications, including aerospace, automotive, coatings, and soft robotics. A diverse range of 15 types of silicones are meticulously analyzed, including elastomers, adhesives, and oils, using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). This study highlights these transition temperatures’ role in shaping silicone elastomers’ thermomechanical behavior and their significance for effective utilization in advanced applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Materials and Engineering
Macromolecular Materials and Engineering 工程技术-材料科学:综合
CiteScore
7.30
自引率
5.10%
发文量
328
审稿时长
1.6 months
期刊介绍: Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications. Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science. The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments. ISSN: 1438-7492 (print). 1439-2054 (online). Readership:Polymer scientists, chemists, physicists, materials scientists, engineers Abstracting and Indexing Information: CAS: Chemical Abstracts Service (ACS) CCR Database (Clarivate Analytics) Chemical Abstracts Service/SciFinder (ACS) Chemistry Server Reaction Center (Clarivate Analytics) ChemWeb (ChemIndustry.com) Chimica Database (Elsevier) COMPENDEX (Elsevier) Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics) Directory of Open Access Journals (DOAJ) INSPEC (IET) Journal Citation Reports/Science Edition (Clarivate Analytics) Materials Science & Engineering Database (ProQuest) PASCAL Database (INIST/CNRS) Polymer Library (iSmithers RAPRA) Reaction Citation Index (Clarivate Analytics) Science Citation Index (Clarivate Analytics) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) SCOPUS (Elsevier) Technology Collection (ProQuest) Web of Science (Clarivate Analytics)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信