S. Subha Anand, R. Rengarajan, A. K. Sudheer, V. V. S. S. Sarma
{"title":"利用234估算东印度洋上层海洋碳输出通量","authors":"S. Subha Anand, R. Rengarajan, A. K. Sudheer, V. V. S. S. Sarma","doi":"10.1029/2024GB008374","DOIUrl":null,"url":null,"abstract":"<p>The strength of the Biological Carbon Pump (BCP) to sequester atmospheric CO<sub>2</sub> in the East Indian Ocean is unclear due to lack of studies. Here, we estimated Particulate Organic Carbon (POC) export flux by using <sup>234</sup>Th as a flux proxy in the upper Indian Ocean (0–300 m depth), including the East Indian Ocean. In seawater, the soluble parent radionuclide, <sup>238</sup>U (<i>t</i><sub>1/2</sub> = 4.47 × 10<sup>9</sup> yr) decays to produce a particle-reactive daughter, <sup>234</sup>Th (<i>t</i><sub>1/2</sub> = 24.1 d), which surface adsorbs onto particles, and sinks from the euphotic zone to the sea bottom. Disequilibrium between <sup>238</sup>U and <sup>234</sup>Th in seawater and POC/<sup>234</sup>Th ratio in sinking particles is used to estimate POC export flux. In this study, euphotic depth integrated <sup>234</sup>Th deficit fluxes and the estimated POC export flux varied from negligible to 2,025 ± 87 dpm m<sup>−2</sup> d<sup>−1</sup> and negligible to 6.6 ± 0.6 mmol C m<sup>−2</sup> d<sup>−1</sup>, respectively. The BCP efficiency varied from negligible (in coastal Arabian Sea) to 14% (near equator), except for the Andaman Sea (0%–80%). Temporal decoupling of primary productivity and POC export flux in the Andaman Sea resulted in a high export ratio. Compilation of spring intermonsoon <sup>234</sup>Th based POC export flux and export efficiency from JGOFS and GEOTRACES showed high export flux and efficiency in the open Arabian Sea and in the Equatorial Indian Ocean but low POC export flux and efficiency in the Bay of Bengal, Andaman Sea, East Indian Ocean, and South Indian Ocean. Although low in magnitude, the Equatorial Indian Ocean sequesters atmospheric CO<sub>2</sub> like the equatorial- Atlantic and Pacific Oceans.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"39 8","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper Ocean Carbon Export Flux Estimation in the East Indian Ocean Using 234Th\",\"authors\":\"S. Subha Anand, R. Rengarajan, A. K. Sudheer, V. V. S. S. Sarma\",\"doi\":\"10.1029/2024GB008374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The strength of the Biological Carbon Pump (BCP) to sequester atmospheric CO<sub>2</sub> in the East Indian Ocean is unclear due to lack of studies. Here, we estimated Particulate Organic Carbon (POC) export flux by using <sup>234</sup>Th as a flux proxy in the upper Indian Ocean (0–300 m depth), including the East Indian Ocean. In seawater, the soluble parent radionuclide, <sup>238</sup>U (<i>t</i><sub>1/2</sub> = 4.47 × 10<sup>9</sup> yr) decays to produce a particle-reactive daughter, <sup>234</sup>Th (<i>t</i><sub>1/2</sub> = 24.1 d), which surface adsorbs onto particles, and sinks from the euphotic zone to the sea bottom. Disequilibrium between <sup>238</sup>U and <sup>234</sup>Th in seawater and POC/<sup>234</sup>Th ratio in sinking particles is used to estimate POC export flux. In this study, euphotic depth integrated <sup>234</sup>Th deficit fluxes and the estimated POC export flux varied from negligible to 2,025 ± 87 dpm m<sup>−2</sup> d<sup>−1</sup> and negligible to 6.6 ± 0.6 mmol C m<sup>−2</sup> d<sup>−1</sup>, respectively. The BCP efficiency varied from negligible (in coastal Arabian Sea) to 14% (near equator), except for the Andaman Sea (0%–80%). Temporal decoupling of primary productivity and POC export flux in the Andaman Sea resulted in a high export ratio. Compilation of spring intermonsoon <sup>234</sup>Th based POC export flux and export efficiency from JGOFS and GEOTRACES showed high export flux and efficiency in the open Arabian Sea and in the Equatorial Indian Ocean but low POC export flux and efficiency in the Bay of Bengal, Andaman Sea, East Indian Ocean, and South Indian Ocean. Although low in magnitude, the Equatorial Indian Ocean sequesters atmospheric CO<sub>2</sub> like the equatorial- Atlantic and Pacific Oceans.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"39 8\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GB008374\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GB008374","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Upper Ocean Carbon Export Flux Estimation in the East Indian Ocean Using 234Th
The strength of the Biological Carbon Pump (BCP) to sequester atmospheric CO2 in the East Indian Ocean is unclear due to lack of studies. Here, we estimated Particulate Organic Carbon (POC) export flux by using 234Th as a flux proxy in the upper Indian Ocean (0–300 m depth), including the East Indian Ocean. In seawater, the soluble parent radionuclide, 238U (t1/2 = 4.47 × 109 yr) decays to produce a particle-reactive daughter, 234Th (t1/2 = 24.1 d), which surface adsorbs onto particles, and sinks from the euphotic zone to the sea bottom. Disequilibrium between 238U and 234Th in seawater and POC/234Th ratio in sinking particles is used to estimate POC export flux. In this study, euphotic depth integrated 234Th deficit fluxes and the estimated POC export flux varied from negligible to 2,025 ± 87 dpm m−2 d−1 and negligible to 6.6 ± 0.6 mmol C m−2 d−1, respectively. The BCP efficiency varied from negligible (in coastal Arabian Sea) to 14% (near equator), except for the Andaman Sea (0%–80%). Temporal decoupling of primary productivity and POC export flux in the Andaman Sea resulted in a high export ratio. Compilation of spring intermonsoon 234Th based POC export flux and export efficiency from JGOFS and GEOTRACES showed high export flux and efficiency in the open Arabian Sea and in the Equatorial Indian Ocean but low POC export flux and efficiency in the Bay of Bengal, Andaman Sea, East Indian Ocean, and South Indian Ocean. Although low in magnitude, the Equatorial Indian Ocean sequesters atmospheric CO2 like the equatorial- Atlantic and Pacific Oceans.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.