基于动量的植被气动粗糙度的全球气候学:MODIS和ICESat-2观测的融合

IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Jordan S. Borak, Michael F. Jasinski, Amy Neuenschwander, Natthachet Tangdamrongsub
{"title":"基于动量的植被气动粗糙度的全球气候学:MODIS和ICESat-2观测的融合","authors":"Jordan S. Borak,&nbsp;Michael F. Jasinski,&nbsp;Amy Neuenschwander,&nbsp;Natthachet Tangdamrongsub","doi":"10.1029/2023EA003027","DOIUrl":null,"url":null,"abstract":"<p>This paper presents global climatology fields of vegetation aerodynamic roughness for momentum based on 17 years of MODIS data. The approach combines MODIS-derived leaf-area index and ICESat-2 canopy heights with a previously developed representation of the roughness sublayer to generate data products for both the vegetation roughness length for momentum (z0m) and the zero-plane displacement height (d0). The principal products consist of a mean seasonal cycle of the two roughness parameters at 500-m spatial resolution based on a nominal 8-day time step. The second, derivative data set removes seasonality while maintaining spatial information by assigning temporal averages of the underlying 8-day data to each 500-m pixel. A third data set includes global spatial and temporal averages for a range of MODIS land cover types, analogous to the look-up tables employed in land surface modeling. Comparison to field data indicates that satellite-derived maps of vegetation height produce more favorable roughness results than generic land class-aggregated values published in the literature, although land cover classification mismatches between field and satellite footprints make validation challenging. The resulting roughness length and displacement-height fields possess internal consistency, with small differences overall as compared to static, cover-type dependent estimates, making them a realistic alternative for incorporation into regional and global-scale earth science models that benefit from improved representation of land-atmosphere interactions.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 8","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023EA003027","citationCount":"0","resultStr":"{\"title\":\"Global Climatologies of Vegetation Aerodynamic Roughness for Momentum: A Fusion of MODIS and ICESat-2 Observations\",\"authors\":\"Jordan S. Borak,&nbsp;Michael F. Jasinski,&nbsp;Amy Neuenschwander,&nbsp;Natthachet Tangdamrongsub\",\"doi\":\"10.1029/2023EA003027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents global climatology fields of vegetation aerodynamic roughness for momentum based on 17 years of MODIS data. The approach combines MODIS-derived leaf-area index and ICESat-2 canopy heights with a previously developed representation of the roughness sublayer to generate data products for both the vegetation roughness length for momentum (z0m) and the zero-plane displacement height (d0). The principal products consist of a mean seasonal cycle of the two roughness parameters at 500-m spatial resolution based on a nominal 8-day time step. The second, derivative data set removes seasonality while maintaining spatial information by assigning temporal averages of the underlying 8-day data to each 500-m pixel. A third data set includes global spatial and temporal averages for a range of MODIS land cover types, analogous to the look-up tables employed in land surface modeling. Comparison to field data indicates that satellite-derived maps of vegetation height produce more favorable roughness results than generic land class-aggregated values published in the literature, although land cover classification mismatches between field and satellite footprints make validation challenging. The resulting roughness length and displacement-height fields possess internal consistency, with small differences overall as compared to static, cover-type dependent estimates, making them a realistic alternative for incorporation into regional and global-scale earth science models that benefit from improved representation of land-atmosphere interactions.</p>\",\"PeriodicalId\":54286,\"journal\":{\"name\":\"Earth and Space Science\",\"volume\":\"12 8\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023EA003027\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023EA003027\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023EA003027","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文基于17年MODIS数据,给出了全球植被动力粗糙度的气候学场。该方法将modis衍生的叶面积指数和ICESat-2冠层高度与先前开发的粗糙度子层表示相结合,生成植被粗糙度长度动量(z0m)和零平面位移高度(d0)的数据产品。主要产品包括两个粗糙度参数在500米空间分辨率下基于名义8天时间步长的平均季节周期。第二,衍生数据集通过将基础8天数据的时间平均值分配到每个500 m像素来保留空间信息,从而消除了季节性。第三个数据集包括一系列MODIS土地覆盖类型的全球时空平均值,类似于地表模拟中使用的查找表。与野外数据的比较表明,卫星衍生的植被高度图比文献中发表的一般土地分类汇总值产生更有利的粗糙度结果,尽管野外和卫星足迹之间的土地覆盖分类不匹配使验证具有挑战性。由此产生的粗糙度长度和位移-高度场具有内部一致性,与静态的、依赖于覆盖类型的估计相比,总体上差异很小,使它们成为纳入区域和全球尺度地球科学模型的现实选择,这些模型受益于陆地-大气相互作用的改进表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Global Climatologies of Vegetation Aerodynamic Roughness for Momentum: A Fusion of MODIS and ICESat-2 Observations

Global Climatologies of Vegetation Aerodynamic Roughness for Momentum: A Fusion of MODIS and ICESat-2 Observations

Global Climatologies of Vegetation Aerodynamic Roughness for Momentum: A Fusion of MODIS and ICESat-2 Observations

Global Climatologies of Vegetation Aerodynamic Roughness for Momentum: A Fusion of MODIS and ICESat-2 Observations

This paper presents global climatology fields of vegetation aerodynamic roughness for momentum based on 17 years of MODIS data. The approach combines MODIS-derived leaf-area index and ICESat-2 canopy heights with a previously developed representation of the roughness sublayer to generate data products for both the vegetation roughness length for momentum (z0m) and the zero-plane displacement height (d0). The principal products consist of a mean seasonal cycle of the two roughness parameters at 500-m spatial resolution based on a nominal 8-day time step. The second, derivative data set removes seasonality while maintaining spatial information by assigning temporal averages of the underlying 8-day data to each 500-m pixel. A third data set includes global spatial and temporal averages for a range of MODIS land cover types, analogous to the look-up tables employed in land surface modeling. Comparison to field data indicates that satellite-derived maps of vegetation height produce more favorable roughness results than generic land class-aggregated values published in the literature, although land cover classification mismatches between field and satellite footprints make validation challenging. The resulting roughness length and displacement-height fields possess internal consistency, with small differences overall as compared to static, cover-type dependent estimates, making them a realistic alternative for incorporation into regional and global-scale earth science models that benefit from improved representation of land-atmosphere interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信