Daryna Piontkivska, João M. P. Jorge, Dalila Mil-Homens, Tiago M. Martins, Pedro Crespo, Demosthenes P. Morales, Dinah Carvalho, José Melo-Cristino, Raquel Sá-Leão, Gustavo H. Goldman, Cristina Silva Pereira
{"title":"隐藏的盟友:解码烟曲霉核心菌丝内菌群","authors":"Daryna Piontkivska, João M. P. Jorge, Dalila Mil-Homens, Tiago M. Martins, Pedro Crespo, Demosthenes P. Morales, Dinah Carvalho, José Melo-Cristino, Raquel Sá-Leão, Gustavo H. Goldman, Cristina Silva Pereira","doi":"10.1111/1758-2229.70153","DOIUrl":null,"url":null,"abstract":"<p>Bacterial–fungal interactions that influence the behaviour of one or both organisms are common in nature. Well-studied systems include endosymbiotic relationships that range from transient to long-term associations. Diverse endohyphal bacteria associate with fungal hosts, emphasising the need to better comprehend the fungal bacteriome. We evaluated the hypothesis that <i>Aspergillus fumigatus</i> harbours an endohyphal community of bacteria that influence the host phenotype. We analysed whether 38 <i>A. fumigatus</i> strains show stable association with diverse endohyphal bacteria; all derived from single-conidium cultures that were subjected to antibiotic and heat treatments. The fungal bacteriome, inferred through analysis of bacterial diversity within the fungal strains (short- and long- read sequencing methods), revealed the presence of core endohyphal bacterial genera. Microscopic analysis further confirmed the presence of endohyphal bacteria. The fungal strains exhibited high genetic diversity and phenotypic heterogeneity in drug susceptibility and in vivo virulence. No correlations were observed between genomic or functional traits and bacteriome diversity, but the abundance of some bacterial genera correlated with fungal virulence or posaconazole susceptibility. The observed endobacteriome may play functional roles, for example, nitrogen fixation. Our study emphasises the existence of complex interactions between fungi and endohyphal bacteria, possibly impacting the phenotype of the fungal host, including virulence.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70153","citationCount":"0","resultStr":"{\"title\":\"Hidden Allies: Decoding the Core Endohyphal Bacteriome of Aspergillus fumigatus\",\"authors\":\"Daryna Piontkivska, João M. P. Jorge, Dalila Mil-Homens, Tiago M. Martins, Pedro Crespo, Demosthenes P. Morales, Dinah Carvalho, José Melo-Cristino, Raquel Sá-Leão, Gustavo H. Goldman, Cristina Silva Pereira\",\"doi\":\"10.1111/1758-2229.70153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bacterial–fungal interactions that influence the behaviour of one or both organisms are common in nature. Well-studied systems include endosymbiotic relationships that range from transient to long-term associations. Diverse endohyphal bacteria associate with fungal hosts, emphasising the need to better comprehend the fungal bacteriome. We evaluated the hypothesis that <i>Aspergillus fumigatus</i> harbours an endohyphal community of bacteria that influence the host phenotype. We analysed whether 38 <i>A. fumigatus</i> strains show stable association with diverse endohyphal bacteria; all derived from single-conidium cultures that were subjected to antibiotic and heat treatments. The fungal bacteriome, inferred through analysis of bacterial diversity within the fungal strains (short- and long- read sequencing methods), revealed the presence of core endohyphal bacterial genera. Microscopic analysis further confirmed the presence of endohyphal bacteria. The fungal strains exhibited high genetic diversity and phenotypic heterogeneity in drug susceptibility and in vivo virulence. No correlations were observed between genomic or functional traits and bacteriome diversity, but the abundance of some bacterial genera correlated with fungal virulence or posaconazole susceptibility. The observed endobacteriome may play functional roles, for example, nitrogen fixation. Our study emphasises the existence of complex interactions between fungi and endohyphal bacteria, possibly impacting the phenotype of the fungal host, including virulence.</p>\",\"PeriodicalId\":163,\"journal\":{\"name\":\"Environmental Microbiology Reports\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70153\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1758-2229.70153\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1758-2229.70153","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Hidden Allies: Decoding the Core Endohyphal Bacteriome of Aspergillus fumigatus
Bacterial–fungal interactions that influence the behaviour of one or both organisms are common in nature. Well-studied systems include endosymbiotic relationships that range from transient to long-term associations. Diverse endohyphal bacteria associate with fungal hosts, emphasising the need to better comprehend the fungal bacteriome. We evaluated the hypothesis that Aspergillus fumigatus harbours an endohyphal community of bacteria that influence the host phenotype. We analysed whether 38 A. fumigatus strains show stable association with diverse endohyphal bacteria; all derived from single-conidium cultures that were subjected to antibiotic and heat treatments. The fungal bacteriome, inferred through analysis of bacterial diversity within the fungal strains (short- and long- read sequencing methods), revealed the presence of core endohyphal bacterial genera. Microscopic analysis further confirmed the presence of endohyphal bacteria. The fungal strains exhibited high genetic diversity and phenotypic heterogeneity in drug susceptibility and in vivo virulence. No correlations were observed between genomic or functional traits and bacteriome diversity, but the abundance of some bacterial genera correlated with fungal virulence or posaconazole susceptibility. The observed endobacteriome may play functional roles, for example, nitrogen fixation. Our study emphasises the existence of complex interactions between fungi and endohyphal bacteria, possibly impacting the phenotype of the fungal host, including virulence.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.