Tirumala Chakradhar, Katie Gittins, Georges Habib, Norbert Peyerimhoff
{"title":"关于函数上的磁性Steklov算子的注释","authors":"Tirumala Chakradhar, Katie Gittins, Georges Habib, Norbert Peyerimhoff","doi":"10.1112/mtk.70037","DOIUrl":null,"url":null,"abstract":"<p>We consider the magnetic Steklov eigenvalue problem on compact Riemannian manifolds with boundary for generic magnetic potentials and establish various results concerning the spectrum. We provide equivalent characterizations of magnetic Steklov operators which are unitarily equivalent to the classical Steklov operator and study bounds for the smallest eigenvalue. We prove a Cheeger–Jammes-type lower bound for the first eigenvalue by introducing magnetic Cheeger constants. We also obtain an analogue of an upper bound for the first magnetic Neumann eigenvalue due to Colbois, El Soufi, Ilias, and Savo. In addition, we compute the full spectrum in the case of the Euclidean 2-ball and 4-ball for a particular choice of magnetic potential given by Killing vector fields, and discuss the behavior. Finally, we establish a comparison result for the magnetic Steklov operator associated with the manifold and the square root of the magnetic Laplacian on the boundary, which generalizes the uniform geometric upper bounds for the difference of the corresponding eigenvalues in the nonmagnetic case due to Colbois, Girouard, and Hassannezhad.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70037","citationCount":"0","resultStr":"{\"title\":\"A note on the magnetic Steklov operator on functions\",\"authors\":\"Tirumala Chakradhar, Katie Gittins, Georges Habib, Norbert Peyerimhoff\",\"doi\":\"10.1112/mtk.70037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the magnetic Steklov eigenvalue problem on compact Riemannian manifolds with boundary for generic magnetic potentials and establish various results concerning the spectrum. We provide equivalent characterizations of magnetic Steklov operators which are unitarily equivalent to the classical Steklov operator and study bounds for the smallest eigenvalue. We prove a Cheeger–Jammes-type lower bound for the first eigenvalue by introducing magnetic Cheeger constants. We also obtain an analogue of an upper bound for the first magnetic Neumann eigenvalue due to Colbois, El Soufi, Ilias, and Savo. In addition, we compute the full spectrum in the case of the Euclidean 2-ball and 4-ball for a particular choice of magnetic potential given by Killing vector fields, and discuss the behavior. Finally, we establish a comparison result for the magnetic Steklov operator associated with the manifold and the square root of the magnetic Laplacian on the boundary, which generalizes the uniform geometric upper bounds for the difference of the corresponding eigenvalues in the nonmagnetic case due to Colbois, Girouard, and Hassannezhad.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":\"71 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70037\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/mtk.70037\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/mtk.70037","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
研究了紧致黎曼流形上具有一般磁势边界的磁性Steklov特征值问题,得到了关于谱的各种结果。我们给出了与经典Steklov算子一元等价的磁性Steklov算子的等价表征,并研究了最小特征值的界。通过引入磁性Cheeger常数,证明了第一特征值的Cheeger - james型下界。我们还得到了Colbois, El Soufi, Ilias和Savo的第一磁性诺伊曼特征值的上界的模拟。此外,我们计算了欧几里得2球和4球情况下,由消矢量场给出的特定磁势选择的全谱,并讨论了其行为。最后,我们建立了与流形相关的磁性Steklov算子与边界上的磁性拉普拉斯算子的平方根的比较结果,推广了非磁性情况下由于Colbois、Girouard和Hassannezhad导致的相应特征值差异的一致几何上界。
A note on the magnetic Steklov operator on functions
We consider the magnetic Steklov eigenvalue problem on compact Riemannian manifolds with boundary for generic magnetic potentials and establish various results concerning the spectrum. We provide equivalent characterizations of magnetic Steklov operators which are unitarily equivalent to the classical Steklov operator and study bounds for the smallest eigenvalue. We prove a Cheeger–Jammes-type lower bound for the first eigenvalue by introducing magnetic Cheeger constants. We also obtain an analogue of an upper bound for the first magnetic Neumann eigenvalue due to Colbois, El Soufi, Ilias, and Savo. In addition, we compute the full spectrum in the case of the Euclidean 2-ball and 4-ball for a particular choice of magnetic potential given by Killing vector fields, and discuss the behavior. Finally, we establish a comparison result for the magnetic Steklov operator associated with the manifold and the square root of the magnetic Laplacian on the boundary, which generalizes the uniform geometric upper bounds for the difference of the corresponding eigenvalues in the nonmagnetic case due to Colbois, Girouard, and Hassannezhad.
期刊介绍:
Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.