Li Zhang, Zhixue Shen, Yanwei Chen, Cuicui Ma, Mi Huang, Yueyue He, Guilan Wang, Dan Huang, Bo Su, Boguang Jiang, Yingjie Luo, Wenfang Li, Mao Lian, Xiaolong Xu, Xingjun Cheng, Zhenling Wang
{"title":"x射线照射铜绿假单胞菌诱导膜外-内膜小泡生物发生,有望作为急性肺炎疫苗","authors":"Li Zhang, Zhixue Shen, Yanwei Chen, Cuicui Ma, Mi Huang, Yueyue He, Guilan Wang, Dan Huang, Bo Su, Boguang Jiang, Yingjie Luo, Wenfang Li, Mao Lian, Xiaolong Xu, Xingjun Cheng, Zhenling Wang","doi":"10.1002/jev2.70151","DOIUrl":null,"url":null,"abstract":"<p>Many bacteria produce extracellular vesicles (EVs) that play critical roles in various biological processes and hold significant potential for biomedical applications. However, the mechanisms underlying EV biogenesis remain incompletely understood. Using transmission electron microscopy, we demonstrate that X-ray irradiation induces outward blebbing of the inner membrane in <i>Pseudomonas aeruginosa</i> PAO1 (<i>P. aeruginosa</i> PAO1), leading to the formation of outer-inner membrane vesicles (OIMVs) through outer membrane pinching-off. The endolysin Lys, which is negatively regulated by PrtR and positively regulated by PrtN, is essential for OIMV production. Lys translocates into the periplasmic space, where it disrupts the peptidoglycan layer, causing morphological changes from rod-shaped to round cells and facilitating OIMV release. Furthermore, deletion of YciB, a protein crucial for inner membrane integrity, significantly increases OIMV production. In a murine model of acute pneumonia, OIMV immunisation significantly improves pulmonary bacterial clearance, reduces lung injury and enhances survival rates. Our findings reveal inner membrane blebbing as a novel mechanism of OIMV biogenesis in <i>P. aeruginosa</i> PAO1 under X-ray irradiation and highlight the potential of OIMVs as promising vaccine candidates against <i>P. aeruginosa</i> infections.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 8","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://isevjournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70151","citationCount":"0","resultStr":"{\"title\":\"X-Ray Irradiation of Pseudomonas aeruginosa Induces Biogenesis of Outer-Inner Membrane Vesicles With Potential as a Vaccine Against Acute Pneumonia\",\"authors\":\"Li Zhang, Zhixue Shen, Yanwei Chen, Cuicui Ma, Mi Huang, Yueyue He, Guilan Wang, Dan Huang, Bo Su, Boguang Jiang, Yingjie Luo, Wenfang Li, Mao Lian, Xiaolong Xu, Xingjun Cheng, Zhenling Wang\",\"doi\":\"10.1002/jev2.70151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many bacteria produce extracellular vesicles (EVs) that play critical roles in various biological processes and hold significant potential for biomedical applications. However, the mechanisms underlying EV biogenesis remain incompletely understood. Using transmission electron microscopy, we demonstrate that X-ray irradiation induces outward blebbing of the inner membrane in <i>Pseudomonas aeruginosa</i> PAO1 (<i>P. aeruginosa</i> PAO1), leading to the formation of outer-inner membrane vesicles (OIMVs) through outer membrane pinching-off. The endolysin Lys, which is negatively regulated by PrtR and positively regulated by PrtN, is essential for OIMV production. Lys translocates into the periplasmic space, where it disrupts the peptidoglycan layer, causing morphological changes from rod-shaped to round cells and facilitating OIMV release. Furthermore, deletion of YciB, a protein crucial for inner membrane integrity, significantly increases OIMV production. In a murine model of acute pneumonia, OIMV immunisation significantly improves pulmonary bacterial clearance, reduces lung injury and enhances survival rates. Our findings reveal inner membrane blebbing as a novel mechanism of OIMV biogenesis in <i>P. aeruginosa</i> PAO1 under X-ray irradiation and highlight the potential of OIMVs as promising vaccine candidates against <i>P. aeruginosa</i> infections.</p>\",\"PeriodicalId\":15811,\"journal\":{\"name\":\"Journal of Extracellular Vesicles\",\"volume\":\"14 8\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://isevjournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70151\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Extracellular Vesicles\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://isevjournals.onlinelibrary.wiley.com/doi/10.1002/jev2.70151\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://isevjournals.onlinelibrary.wiley.com/doi/10.1002/jev2.70151","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
X-Ray Irradiation of Pseudomonas aeruginosa Induces Biogenesis of Outer-Inner Membrane Vesicles With Potential as a Vaccine Against Acute Pneumonia
Many bacteria produce extracellular vesicles (EVs) that play critical roles in various biological processes and hold significant potential for biomedical applications. However, the mechanisms underlying EV biogenesis remain incompletely understood. Using transmission electron microscopy, we demonstrate that X-ray irradiation induces outward blebbing of the inner membrane in Pseudomonas aeruginosa PAO1 (P. aeruginosa PAO1), leading to the formation of outer-inner membrane vesicles (OIMVs) through outer membrane pinching-off. The endolysin Lys, which is negatively regulated by PrtR and positively regulated by PrtN, is essential for OIMV production. Lys translocates into the periplasmic space, where it disrupts the peptidoglycan layer, causing morphological changes from rod-shaped to round cells and facilitating OIMV release. Furthermore, deletion of YciB, a protein crucial for inner membrane integrity, significantly increases OIMV production. In a murine model of acute pneumonia, OIMV immunisation significantly improves pulmonary bacterial clearance, reduces lung injury and enhances survival rates. Our findings reveal inner membrane blebbing as a novel mechanism of OIMV biogenesis in P. aeruginosa PAO1 under X-ray irradiation and highlight the potential of OIMVs as promising vaccine candidates against P. aeruginosa infections.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.