Yujun Li, Lin Zhao, Zhenrui Li, Zhihui Wang, Zhenbing Sun, Haifeng Zuo, Xing'e Liu
{"title":"具有良好电磁屏蔽性能的自支撑竹炭","authors":"Yujun Li, Lin Zhao, Zhenrui Li, Zhihui Wang, Zhenbing Sun, Haifeng Zuo, Xing'e Liu","doi":"10.1002/cmtd.202400091","DOIUrl":null,"url":null,"abstract":"<p>Biochar materials have become an emerging choice for electromagnetic interference (EMI) shielding functional materials due to their inherent layered porous structure and sustainability. However, previous studies have primarily focused on the compositional and structural design of biochar with functional nanomaterials and overlooked the relationship between its intrinsic physicochemical properties and EMI shielding performance. In this study, the relationship between the preparation conditions of bamboo charcoal (BC) and its subsequent microstructure evolution, phase composition, electrical conductivity, and EMI shielding properties is investigated. BC with abundant hierarchical pores and continuous conductive networks is prepared by a one-step pyrolysis process. This structure facilitates the internal conduction of electrons, thereby enhancing EMI shielding performance. Notably, the electrical conductivity of BC is sharply improved from 1.3 × 10<sup>−5</sup> to 31.2 S cm<sup>−1</sup> as the pyrolysis temperature increases from 600 to 1000 °C. Correspondingly, the EMI shielding effectiveness (EMI SE) improves from 0.29 to 73.63 dB with a shielding efficiency exceeding 99.99%, demonstrating exceptional EM wave shielding capabilities. The continuous conductive networks induced by increased carbonization degree cause a pronounced impedance mismatch between the air and the BC surface, leading to intense EM wave reflections. This work unlocks a novel prospect for the high-value utilization of bamboo resources.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"5 8","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202400091","citationCount":"0","resultStr":"{\"title\":\"Self-Supporting Bamboo Charcoal with Outstanding Electromagnetic Interference Shielding Performance\",\"authors\":\"Yujun Li, Lin Zhao, Zhenrui Li, Zhihui Wang, Zhenbing Sun, Haifeng Zuo, Xing'e Liu\",\"doi\":\"10.1002/cmtd.202400091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biochar materials have become an emerging choice for electromagnetic interference (EMI) shielding functional materials due to their inherent layered porous structure and sustainability. However, previous studies have primarily focused on the compositional and structural design of biochar with functional nanomaterials and overlooked the relationship between its intrinsic physicochemical properties and EMI shielding performance. In this study, the relationship between the preparation conditions of bamboo charcoal (BC) and its subsequent microstructure evolution, phase composition, electrical conductivity, and EMI shielding properties is investigated. BC with abundant hierarchical pores and continuous conductive networks is prepared by a one-step pyrolysis process. This structure facilitates the internal conduction of electrons, thereby enhancing EMI shielding performance. Notably, the electrical conductivity of BC is sharply improved from 1.3 × 10<sup>−5</sup> to 31.2 S cm<sup>−1</sup> as the pyrolysis temperature increases from 600 to 1000 °C. Correspondingly, the EMI shielding effectiveness (EMI SE) improves from 0.29 to 73.63 dB with a shielding efficiency exceeding 99.99%, demonstrating exceptional EM wave shielding capabilities. The continuous conductive networks induced by increased carbonization degree cause a pronounced impedance mismatch between the air and the BC surface, leading to intense EM wave reflections. This work unlocks a novel prospect for the high-value utilization of bamboo resources.</p>\",\"PeriodicalId\":72562,\"journal\":{\"name\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"volume\":\"5 8\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202400091\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cmtd.202400091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cmtd.202400091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
生物炭材料因其固有的层状多孔结构和可持续性而成为新兴的电磁干扰屏蔽功能材料。然而,以往的研究主要集中在功能纳米材料生物炭的组成和结构设计上,忽视了其内在理化性质与电磁干扰屏蔽性能之间的关系。研究了竹炭的制备条件与竹炭的微观结构演变、相组成、电导率和电磁干扰屏蔽性能之间的关系。采用一步热解法制备了具有丰富分层孔隙和连续导电网络的BC。这种结构有利于电子的内部传导,从而提高EMI屏蔽性能。当热解温度从600℃升高到1000℃时,BC的电导率从1.3 × 10−5急剧提高到31.2 S cm−1。相应地,电磁干扰屏蔽效率(EMI SE)从0.29提高到73.63 dB,屏蔽效率超过99.99%,显示出卓越的电磁波屏蔽能力。炭化程度增加导致的连续导电网络导致空气和BC表面之间的阻抗失配,导致强烈的电磁波反射。本研究为竹材资源的高价值利用开辟了新的前景。
Self-Supporting Bamboo Charcoal with Outstanding Electromagnetic Interference Shielding Performance
Biochar materials have become an emerging choice for electromagnetic interference (EMI) shielding functional materials due to their inherent layered porous structure and sustainability. However, previous studies have primarily focused on the compositional and structural design of biochar with functional nanomaterials and overlooked the relationship between its intrinsic physicochemical properties and EMI shielding performance. In this study, the relationship between the preparation conditions of bamboo charcoal (BC) and its subsequent microstructure evolution, phase composition, electrical conductivity, and EMI shielding properties is investigated. BC with abundant hierarchical pores and continuous conductive networks is prepared by a one-step pyrolysis process. This structure facilitates the internal conduction of electrons, thereby enhancing EMI shielding performance. Notably, the electrical conductivity of BC is sharply improved from 1.3 × 10−5 to 31.2 S cm−1 as the pyrolysis temperature increases from 600 to 1000 °C. Correspondingly, the EMI shielding effectiveness (EMI SE) improves from 0.29 to 73.63 dB with a shielding efficiency exceeding 99.99%, demonstrating exceptional EM wave shielding capabilities. The continuous conductive networks induced by increased carbonization degree cause a pronounced impedance mismatch between the air and the BC surface, leading to intense EM wave reflections. This work unlocks a novel prospect for the high-value utilization of bamboo resources.