Zhibo Zhang, San Lu, Quanming Lu, Rongsheng Wang, Xinmin Li, Shimou Wang, Anton V. Artemyev
{"title":"地球磁尾薄电流片的径向力平衡:MMS观测","authors":"Zhibo Zhang, San Lu, Quanming Lu, Rongsheng Wang, Xinmin Li, Shimou Wang, Anton V. Artemyev","doi":"10.1029/2025GL115440","DOIUrl":null,"url":null,"abstract":"<p>Thin current sheets (TCS) in Earth's magnetotail are fundamental to magnetospheric dynamics. A key question concerning static magnetotail TCSs is the mechanism of radial force balance. Using the unprecedented measurements from the Magnetospheric Multiscale mission, we statistically analyze TCS crossing events from 2017 to 2020 to investigate this issue. Our analysis reveals a strong magnetic tension within TCSs, with the radial thermal pressure gradient accounts for only 10%–30% of the required balance. The off-diagonal pressure components (<i>P</i><sub><i>i</i>,<i>xz</i></sub> and <i>P</i><sub><i>e</i>,<i>xz</i></sub>) are crucial for achieving force balance, contributing ∼55% of the required force in the further-Earth region (−30 <i>R</i><sub><i>E</i></sub> < <i>X</i> < −20 <i>R</i><sub><i>E</i></sub>, where <i>R</i><sub><i>E</i></sub> is Earth's radius), and ∼30% in the near-Earth region (−20 <i>R</i><sub><i>E</i></sub> < <i>X</i> < −10 <i>R</i><sub><i>E</i></sub>). This work provides the first direct observational evidence demonstrating that particle kinetic effects (ion nongyrotropy and electron pressure anisotropy) play a significant role in the force balance of magnetotail TCSs.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 16","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL115440","citationCount":"0","resultStr":"{\"title\":\"Radial Force Balance in Earth's Magnetotail Thin Current Sheets: MMS Observations\",\"authors\":\"Zhibo Zhang, San Lu, Quanming Lu, Rongsheng Wang, Xinmin Li, Shimou Wang, Anton V. Artemyev\",\"doi\":\"10.1029/2025GL115440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thin current sheets (TCS) in Earth's magnetotail are fundamental to magnetospheric dynamics. A key question concerning static magnetotail TCSs is the mechanism of radial force balance. Using the unprecedented measurements from the Magnetospheric Multiscale mission, we statistically analyze TCS crossing events from 2017 to 2020 to investigate this issue. Our analysis reveals a strong magnetic tension within TCSs, with the radial thermal pressure gradient accounts for only 10%–30% of the required balance. The off-diagonal pressure components (<i>P</i><sub><i>i</i>,<i>xz</i></sub> and <i>P</i><sub><i>e</i>,<i>xz</i></sub>) are crucial for achieving force balance, contributing ∼55% of the required force in the further-Earth region (−30 <i>R</i><sub><i>E</i></sub> < <i>X</i> < −20 <i>R</i><sub><i>E</i></sub>, where <i>R</i><sub><i>E</i></sub> is Earth's radius), and ∼30% in the near-Earth region (−20 <i>R</i><sub><i>E</i></sub> < <i>X</i> < −10 <i>R</i><sub><i>E</i></sub>). This work provides the first direct observational evidence demonstrating that particle kinetic effects (ion nongyrotropy and electron pressure anisotropy) play a significant role in the force balance of magnetotail TCSs.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 16\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL115440\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL115440\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL115440","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
地球磁尾中的薄电流片(TCS)是磁层动力学的基础。径向力平衡机理是静磁尾TCSs的一个关键问题。利用磁层多尺度任务前所未有的测量数据,我们统计分析了2017年至2020年的TCS穿越事件,以探讨这一问题。我们的分析表明,tcs内部存在很强的磁张力,径向热压梯度仅占所需平衡的10%-30%。非对角线压力分量(Pi,xz和Pe,xz)对于实现力平衡至关重要,在远地区域(- 30 RE < X < - 20 RE, RE是地球的半径)贡献了所需力的约55%,在近地区域(- 20 RE < X < - 10 RE)贡献了所需力的约30%。这项工作提供了第一个直接的观测证据,证明粒子动力学效应(离子非各向异性和电子压力各向异性)在磁尾tcs的力平衡中起着重要作用。
Radial Force Balance in Earth's Magnetotail Thin Current Sheets: MMS Observations
Thin current sheets (TCS) in Earth's magnetotail are fundamental to magnetospheric dynamics. A key question concerning static magnetotail TCSs is the mechanism of radial force balance. Using the unprecedented measurements from the Magnetospheric Multiscale mission, we statistically analyze TCS crossing events from 2017 to 2020 to investigate this issue. Our analysis reveals a strong magnetic tension within TCSs, with the radial thermal pressure gradient accounts for only 10%–30% of the required balance. The off-diagonal pressure components (Pi,xz and Pe,xz) are crucial for achieving force balance, contributing ∼55% of the required force in the further-Earth region (−30 RE < X < −20 RE, where RE is Earth's radius), and ∼30% in the near-Earth region (−20 RE < X < −10 RE). This work provides the first direct observational evidence demonstrating that particle kinetic effects (ion nongyrotropy and electron pressure anisotropy) play a significant role in the force balance of magnetotail TCSs.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.