Iqra Ibrar, Eman M. Moneer, Muhammad Sharif, Euaggelos E. Zotos
{"title":"混合和对数f(Q, T)$ f(\\mathbb {Q},\\mathcal {T})$ Rastall重力下的紧致星结构","authors":"Iqra Ibrar, Eman M. Moneer, Muhammad Sharif, Euaggelos E. Zotos","doi":"10.1002/prop.70016","DOIUrl":null,"url":null,"abstract":"<p>Spherically symmetric anisotropic solutions that describe compact stellar objects within the framework of modified Rastall <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>,</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(\\mathbb {Q},\\mathcal {T})$</annotation>\n </semantics></math> gravity are explored in this manuscript, where the non-metricity scalar represented by <span></span><math>\n <semantics>\n <mi>Q</mi>\n <annotation>$\\mathbb {Q}$</annotation>\n </semantics></math> and the trace of the energy-momentum tensor is denoted by <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$\\mathcal {T}$</annotation>\n </semantics></math>. To achieve this, the Karmarkar condition is applied and a relationship between the metric functions to solve the resulting field equations is established. In this framework, the field equations are constructed and the behavior of <span></span><math>\n <semantics>\n <mrow>\n <mi>h</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>,</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$h(\\mathbb {Q},\\mathcal {T})$</annotation>\n </semantics></math> under two different scenarios is investigated. In the first scenario, a hybrid form <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>,</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>ψ</mi>\n <msup>\n <mi>Q</mi>\n <mi>n</mi>\n </msup>\n <msup>\n <mi>e</mi>\n <mrow>\n <mi>Q</mi>\n <mi>m</mi>\n </mrow>\n </msup>\n <mo>+</mo>\n <mi>η</mi>\n <mi>T</mi>\n </mrow>\n <annotation>$f(\\mathbb {Q},\\mathcal {T}) = \\psi \\mathbb {Q}^n e^{\\mathbb {Q} m} + \\eta \\mathcal {T}$</annotation>\n </semantics></math> is employed along with a linear equation of state <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>p</mi>\n <mi>r</mi>\n </msub>\n <mo>=</mo>\n <mi>a</mi>\n <mi>ρ</mi>\n <mo>+</mo>\n <mi>b</mi>\n </mrow>\n <annotation>$p_r = a\\rho + b$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo><</mo>\n <mi>a</mi>\n <mo><</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$0 < a < 1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>b</mi>\n <annotation>$b$</annotation>\n </semantics></math> is an arbitrary constant, to derive the corresponding <span></span><math>\n <semantics>\n <mrow>\n <mi>h</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>,</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$h(\\mathbb {Q},\\mathcal {T})$</annotation>\n </semantics></math>. In the second scenario, a logarithmic form of the coupling function <span></span><math>\n <semantics>\n <mrow>\n <mi>h</mi>\n <mrow>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>,</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>Ψ</mi>\n <mi>log</mi>\n <mfenced>\n <mi>Φ</mi>\n <msup>\n <mi>Q</mi>\n <mi>Υ</mi>\n </msup>\n </mfenced>\n <mo>+</mo>\n <msub>\n <mi>η</mi>\n <mn>1</mn>\n </msub>\n <mi>T</mi>\n </mrow>\n <annotation>$h(\\mathbb {Q},\\mathcal {T}) = \\Psi \\log \\left(\\Phi \\mathbb {Q}^{\\Upsilon }\\right) + \\eta _1 \\mathcal {T}$</annotation>\n </semantics></math> is considered. The objective is to explore possible modifications to gravity by varying the parameters <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> in both cases, leading to hybrid, power-law and exponential forms of gravity. The Key physical parameters such as matter variables, anisotropy, gradients, the equation of state parameter, mass function, energy conditions, and stability criteria to assess the physical acceptability of the models are explored. The observational data such as the mass and radius of the PSR J1416-2230 pulsar are used. It is found that all the obtained solutions exhibit physically viable and stable behavior.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 8","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact Star Structure Under Hybrid and Logarithmic \\n \\n \\n f\\n (\\n Q\\n ,\\n T\\n )\\n \\n $f(\\\\mathbb {Q},\\\\mathcal {T})$\\n Rastall Gravity\",\"authors\":\"Iqra Ibrar, Eman M. Moneer, Muhammad Sharif, Euaggelos E. Zotos\",\"doi\":\"10.1002/prop.70016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spherically symmetric anisotropic solutions that describe compact stellar objects within the framework of modified Rastall <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>,</mo>\\n <mi>T</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(\\\\mathbb {Q},\\\\mathcal {T})$</annotation>\\n </semantics></math> gravity are explored in this manuscript, where the non-metricity scalar represented by <span></span><math>\\n <semantics>\\n <mi>Q</mi>\\n <annotation>$\\\\mathbb {Q}$</annotation>\\n </semantics></math> and the trace of the energy-momentum tensor is denoted by <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$\\\\mathcal {T}$</annotation>\\n </semantics></math>. To achieve this, the Karmarkar condition is applied and a relationship between the metric functions to solve the resulting field equations is established. In this framework, the field equations are constructed and the behavior of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>h</mi>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>,</mo>\\n <mi>T</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$h(\\\\mathbb {Q},\\\\mathcal {T})$</annotation>\\n </semantics></math> under two different scenarios is investigated. In the first scenario, a hybrid form <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>,</mo>\\n <mi>T</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mi>ψ</mi>\\n <msup>\\n <mi>Q</mi>\\n <mi>n</mi>\\n </msup>\\n <msup>\\n <mi>e</mi>\\n <mrow>\\n <mi>Q</mi>\\n <mi>m</mi>\\n </mrow>\\n </msup>\\n <mo>+</mo>\\n <mi>η</mi>\\n <mi>T</mi>\\n </mrow>\\n <annotation>$f(\\\\mathbb {Q},\\\\mathcal {T}) = \\\\psi \\\\mathbb {Q}^n e^{\\\\mathbb {Q} m} + \\\\eta \\\\mathcal {T}$</annotation>\\n </semantics></math> is employed along with a linear equation of state <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>p</mi>\\n <mi>r</mi>\\n </msub>\\n <mo>=</mo>\\n <mi>a</mi>\\n <mi>ρ</mi>\\n <mo>+</mo>\\n <mi>b</mi>\\n </mrow>\\n <annotation>$p_r = a\\\\rho + b$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n <mo><</mo>\\n <mi>a</mi>\\n <mo><</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$0 < a < 1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>b</mi>\\n <annotation>$b$</annotation>\\n </semantics></math> is an arbitrary constant, to derive the corresponding <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>h</mi>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>,</mo>\\n <mi>T</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$h(\\\\mathbb {Q},\\\\mathcal {T})$</annotation>\\n </semantics></math>. In the second scenario, a logarithmic form of the coupling function <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>h</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>,</mo>\\n <mi>T</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mi>Ψ</mi>\\n <mi>log</mi>\\n <mfenced>\\n <mi>Φ</mi>\\n <msup>\\n <mi>Q</mi>\\n <mi>Υ</mi>\\n </msup>\\n </mfenced>\\n <mo>+</mo>\\n <msub>\\n <mi>η</mi>\\n <mn>1</mn>\\n </msub>\\n <mi>T</mi>\\n </mrow>\\n <annotation>$h(\\\\mathbb {Q},\\\\mathcal {T}) = \\\\Psi \\\\log \\\\left(\\\\Phi \\\\mathbb {Q}^{\\\\Upsilon }\\\\right) + \\\\eta _1 \\\\mathcal {T}$</annotation>\\n </semantics></math> is considered. The objective is to explore possible modifications to gravity by varying the parameters <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> in both cases, leading to hybrid, power-law and exponential forms of gravity. The Key physical parameters such as matter variables, anisotropy, gradients, the equation of state parameter, mass function, energy conditions, and stability criteria to assess the physical acceptability of the models are explored. The observational data such as the mass and radius of the PSR J1416-2230 pulsar are used. It is found that all the obtained solutions exhibit physically viable and stable behavior.</p>\",\"PeriodicalId\":55150,\"journal\":{\"name\":\"Fortschritte Der Physik-Progress of Physics\",\"volume\":\"73 8\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fortschritte Der Physik-Progress of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/prop.70016\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.70016","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在改进的Rastall f (Q, T) $f(\mathbb {Q},\mathcal {T})$重力框架内描述致密恒星物体的球对称各向异性解在本手稿中进行了探索。其中非度量标量用Q $\mathbb {Q}$表示,能量动量张量的迹迹用T $\mathcal {T}$表示。为此,应用Karmarkar条件,建立度量函数之间的关系,求解得到的场方程。在此框架下,构造了场方程,并研究了h (Q, T) $h(\mathbb {Q},\mathcal {T})$在两种不同情况下的行为。在第一种情况下,混合形式f (Q)T) = ψ Q ne Q m + η T $f(\mathbb {Q},\mathcal {T}) = \psi \mathbb {Q}^n e^{\mathbb {Q} m} + \eta \mathcal {T}$与线性状态方程一起使用P r = a ρ + b $p_r = a\rho + b$,其中0 &lt; a &lt; 1 $0 < a < 1$, b $b$为任意常数,推导出对应的h (Q,T) $h(\mathbb {Q},\mathcal {T})$。在第二种情况下,耦合函数h (Q)的对数形式,考虑T) = Ψ log Φ Q Υ + η 1 T $h(\mathbb {Q},\mathcal {T}) = \Psi \log \left(\Phi \mathbb {Q}^{\Upsilon }\right) + \eta _1 \mathcal {T}$。目的是通过改变这两种情况下的参数m $m$和n $n$来探索对重力的可能修改,从而导致混合,幂律和指数形式的重力。探讨了评估模型物理可接受性的关键物理参数,如物质变量、各向异性、梯度、状态方程参数、质量函数、能量条件和稳定性准则。利用了PSR J1416-2230脉冲星的质量和半径等观测数据。结果表明,所得到的解均表现出物理上可行和稳定的行为。
Compact Star Structure Under Hybrid and Logarithmic
f
(
Q
,
T
)
$f(\mathbb {Q},\mathcal {T})$
Rastall Gravity
Spherically symmetric anisotropic solutions that describe compact stellar objects within the framework of modified Rastall gravity are explored in this manuscript, where the non-metricity scalar represented by and the trace of the energy-momentum tensor is denoted by . To achieve this, the Karmarkar condition is applied and a relationship between the metric functions to solve the resulting field equations is established. In this framework, the field equations are constructed and the behavior of under two different scenarios is investigated. In the first scenario, a hybrid form is employed along with a linear equation of state , where and is an arbitrary constant, to derive the corresponding . In the second scenario, a logarithmic form of the coupling function is considered. The objective is to explore possible modifications to gravity by varying the parameters and in both cases, leading to hybrid, power-law and exponential forms of gravity. The Key physical parameters such as matter variables, anisotropy, gradients, the equation of state parameter, mass function, energy conditions, and stability criteria to assess the physical acceptability of the models are explored. The observational data such as the mass and radius of the PSR J1416-2230 pulsar are used. It is found that all the obtained solutions exhibit physically viable and stable behavior.
期刊介绍:
The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013).
Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.