Claudie-Maude Canuel, Evelyne Thiffault, Nelson Thiffault
{"title":"利用生物质采购减少林分水平的碳排放:加拿大东部森林的案例研究","authors":"Claudie-Maude Canuel, Evelyne Thiffault, Nelson Thiffault","doi":"10.1111/gcbb.70067","DOIUrl":null,"url":null,"abstract":"<p>Many jurisdictions within the boreal and temperate biomes have adopted targets to increase the contribution of forest bioenergy for climate change mitigation. Using residual forest biomass as feedstock is considered, but the carbon emission reductions associated with this practice remain controversial. Our study evaluated how intensifying wood procurement for bioenergy production, alongside supplying fiber for conventional wood industries, can support low-carbon forest management. We used six sites established in eastern Canada as a case study. We compared the carbon balance of four harvesting scenarios with increasing wood procurement intensity (from procuring sawtimber only to procuring sawtimber, pulpwood and biomass) to three scenarios of unharvested forests, two of which experienced natural disturbances. We modeled carbon fluxes over a 100-year simulation period, considering biogenic and fossil emissions from aboveground forest ecosystems, harvested wood products, and wood supply and manufacturing. We assessed the mitigation potential of procuring biomass to produce bioenergy in the form of stemwood, treetops (including branches) or pulpwood. We found that forest harvesting, regardless of the wood procurement intensity, offered limited carbon benefits compared to the referenced undisturbed mature stands in most cases. However, increasing wood procurement can reduce the carbon footprint of wood supply chains, with pulpwood identified as a key feedstock. Compared with harvesting roundwood for conventional industries only, procuring biomass for bioenergy is likely to increase carbon emissions unless it substitutes high-emission energy sources on markets or enhances the next-rotation stand yield, which seems achievable in the context we studied. Bioenergy displacement factors should range from 0.072 to 0.701 tonne of carbon emission reduction per tonne of carbon in the bioenergy product, depending on stand characteristics, biomass feedstock, and cutting cycle length. Our findings provide a foundation for assessing the GHG reduction potential of harvesting activities at a broader scale, considering varying feedstock recovery intensities.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"17 9","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70067","citationCount":"0","resultStr":"{\"title\":\"Leveraging Biomass Procurement to Mitigate Carbon Emissions at the Stand Level: A Case Study in Eastern Canadian Forests\",\"authors\":\"Claudie-Maude Canuel, Evelyne Thiffault, Nelson Thiffault\",\"doi\":\"10.1111/gcbb.70067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many jurisdictions within the boreal and temperate biomes have adopted targets to increase the contribution of forest bioenergy for climate change mitigation. Using residual forest biomass as feedstock is considered, but the carbon emission reductions associated with this practice remain controversial. Our study evaluated how intensifying wood procurement for bioenergy production, alongside supplying fiber for conventional wood industries, can support low-carbon forest management. We used six sites established in eastern Canada as a case study. We compared the carbon balance of four harvesting scenarios with increasing wood procurement intensity (from procuring sawtimber only to procuring sawtimber, pulpwood and biomass) to three scenarios of unharvested forests, two of which experienced natural disturbances. We modeled carbon fluxes over a 100-year simulation period, considering biogenic and fossil emissions from aboveground forest ecosystems, harvested wood products, and wood supply and manufacturing. We assessed the mitigation potential of procuring biomass to produce bioenergy in the form of stemwood, treetops (including branches) or pulpwood. We found that forest harvesting, regardless of the wood procurement intensity, offered limited carbon benefits compared to the referenced undisturbed mature stands in most cases. However, increasing wood procurement can reduce the carbon footprint of wood supply chains, with pulpwood identified as a key feedstock. Compared with harvesting roundwood for conventional industries only, procuring biomass for bioenergy is likely to increase carbon emissions unless it substitutes high-emission energy sources on markets or enhances the next-rotation stand yield, which seems achievable in the context we studied. Bioenergy displacement factors should range from 0.072 to 0.701 tonne of carbon emission reduction per tonne of carbon in the bioenergy product, depending on stand characteristics, biomass feedstock, and cutting cycle length. Our findings provide a foundation for assessing the GHG reduction potential of harvesting activities at a broader scale, considering varying feedstock recovery intensities.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70067\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70067\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70067","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Leveraging Biomass Procurement to Mitigate Carbon Emissions at the Stand Level: A Case Study in Eastern Canadian Forests
Many jurisdictions within the boreal and temperate biomes have adopted targets to increase the contribution of forest bioenergy for climate change mitigation. Using residual forest biomass as feedstock is considered, but the carbon emission reductions associated with this practice remain controversial. Our study evaluated how intensifying wood procurement for bioenergy production, alongside supplying fiber for conventional wood industries, can support low-carbon forest management. We used six sites established in eastern Canada as a case study. We compared the carbon balance of four harvesting scenarios with increasing wood procurement intensity (from procuring sawtimber only to procuring sawtimber, pulpwood and biomass) to three scenarios of unharvested forests, two of which experienced natural disturbances. We modeled carbon fluxes over a 100-year simulation period, considering biogenic and fossil emissions from aboveground forest ecosystems, harvested wood products, and wood supply and manufacturing. We assessed the mitigation potential of procuring biomass to produce bioenergy in the form of stemwood, treetops (including branches) or pulpwood. We found that forest harvesting, regardless of the wood procurement intensity, offered limited carbon benefits compared to the referenced undisturbed mature stands in most cases. However, increasing wood procurement can reduce the carbon footprint of wood supply chains, with pulpwood identified as a key feedstock. Compared with harvesting roundwood for conventional industries only, procuring biomass for bioenergy is likely to increase carbon emissions unless it substitutes high-emission energy sources on markets or enhances the next-rotation stand yield, which seems achievable in the context we studied. Bioenergy displacement factors should range from 0.072 to 0.701 tonne of carbon emission reduction per tonne of carbon in the bioenergy product, depending on stand characteristics, biomass feedstock, and cutting cycle length. Our findings provide a foundation for assessing the GHG reduction potential of harvesting activities at a broader scale, considering varying feedstock recovery intensities.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.