乘法顶点代数和量子环代数

IF 1.2 2区 数学 Q1 MATHEMATICS
Henry Liu
{"title":"乘法顶点代数和量子环代数","authors":"Henry Liu","doi":"10.1112/jlms.70270","DOIUrl":null,"url":null,"abstract":"<p>We define a multiplicative version of vertex coalgebras and show that various equivariant K-theoretic Hall algebras (KHAs) admit compatible multiplicative vertex coalgebra structures. In particular, this is true of Varagnolo–Vasserot's preprojective KHA, which is (conjecturally) isomorphic to positive halves of certain quantum loop algebras.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicative vertex algebras and quantum loop algebras\",\"authors\":\"Henry Liu\",\"doi\":\"10.1112/jlms.70270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We define a multiplicative version of vertex coalgebras and show that various equivariant K-theoretic Hall algebras (KHAs) admit compatible multiplicative vertex coalgebra structures. In particular, this is true of Varagnolo–Vasserot's preprojective KHA, which is (conjecturally) isomorphic to positive halves of certain quantum loop algebras.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70270\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70270","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了顶点协代数的一个乘法版本,并证明了各种等变k -理论霍尔代数(KHAs)允许相容的乘法顶点协代数结构。特别是Varagnolo-Vasserot的预投影KHA,它(推测)同构于某些量子环代数的正半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiplicative vertex algebras and quantum loop algebras

Multiplicative vertex algebras and quantum loop algebras

Multiplicative vertex algebras and quantum loop algebras

We define a multiplicative version of vertex coalgebras and show that various equivariant K-theoretic Hall algebras (KHAs) admit compatible multiplicative vertex coalgebra structures. In particular, this is true of Varagnolo–Vasserot's preprojective KHA, which is (conjecturally) isomorphic to positive halves of certain quantum loop algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信