Z. A. Temerdashev, S. K. Ovsepyan, T. N. Musorina, I. G. Korpakova
{"title":"气相色谱-质谱联用法测定高有机质土壤中多环芳烃的富集特征","authors":"Z. A. Temerdashev, S. K. Ovsepyan, T. N. Musorina, I. G. Korpakova","doi":"10.1134/S1061934825700662","DOIUrl":null,"url":null,"abstract":"<p>Specific features of the preconcentration and determination of polycyclic aromatic hydrocarbons (PAHs) in humus-rich soils by gas chromatography–mass spectrometry (GC–MS) are studied. The QuEChERS technique and dispersive liquid–liquid microextraction (DLLME) were employed to extract PAHs from soils using acetone and binary extractants of various compositions, including acetonitrile–dichloromethane, acetonitrile–acetone, acetone–hexane, acetone–chloroform, acetone–dichloromethane, and ethyl acetate–dichloromethane. Recoveries of low- and medium-molecular-weight PAHs using these solvent mixtures reached approximately 100%, while the acetone–dichloromethane mixture yielded over 90% recovery for high-molecular-weight PAHs. Under optimized GC–MS conditions with QuEChERS extraction, the limits of quantification (LOQ) for fluoranthene, pyrene, chrysene, and triphenylene reached 5 µg/kg, and for the remaining PAHs, 10 µg/kg in humus-rich soils. It was shown that the reliable GC–MS determination of lower concentrations of PAHs requires both the elimination of the matrix effect and the preconcentration of the analytes. The sequential application of QuEChERS and DLLME techniques enabled a decrease in the limits of quantification by GC–MS to 1.8 µg/kg for fluoranthene, pyrene, chrysene, and triphenylene, and to 3.5 µg/kg for the remaining PAHs. The optimized procedure for PAH determination in humus-rich soils was validated using real chernozem samples.</p>","PeriodicalId":606,"journal":{"name":"Journal of Analytical Chemistry","volume":"80 8","pages":"1389 - 1401"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Features of Preconcentration and Determination of PAHs in Soils with High Organic Matter Content by Gas Chromatography–Mass Spectrometry\",\"authors\":\"Z. A. Temerdashev, S. K. Ovsepyan, T. N. Musorina, I. G. Korpakova\",\"doi\":\"10.1134/S1061934825700662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Specific features of the preconcentration and determination of polycyclic aromatic hydrocarbons (PAHs) in humus-rich soils by gas chromatography–mass spectrometry (GC–MS) are studied. The QuEChERS technique and dispersive liquid–liquid microextraction (DLLME) were employed to extract PAHs from soils using acetone and binary extractants of various compositions, including acetonitrile–dichloromethane, acetonitrile–acetone, acetone–hexane, acetone–chloroform, acetone–dichloromethane, and ethyl acetate–dichloromethane. Recoveries of low- and medium-molecular-weight PAHs using these solvent mixtures reached approximately 100%, while the acetone–dichloromethane mixture yielded over 90% recovery for high-molecular-weight PAHs. Under optimized GC–MS conditions with QuEChERS extraction, the limits of quantification (LOQ) for fluoranthene, pyrene, chrysene, and triphenylene reached 5 µg/kg, and for the remaining PAHs, 10 µg/kg in humus-rich soils. It was shown that the reliable GC–MS determination of lower concentrations of PAHs requires both the elimination of the matrix effect and the preconcentration of the analytes. The sequential application of QuEChERS and DLLME techniques enabled a decrease in the limits of quantification by GC–MS to 1.8 µg/kg for fluoranthene, pyrene, chrysene, and triphenylene, and to 3.5 µg/kg for the remaining PAHs. The optimized procedure for PAH determination in humus-rich soils was validated using real chernozem samples.</p>\",\"PeriodicalId\":606,\"journal\":{\"name\":\"Journal of Analytical Chemistry\",\"volume\":\"80 8\",\"pages\":\"1389 - 1401\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061934825700662\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061934825700662","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Features of Preconcentration and Determination of PAHs in Soils with High Organic Matter Content by Gas Chromatography–Mass Spectrometry
Specific features of the preconcentration and determination of polycyclic aromatic hydrocarbons (PAHs) in humus-rich soils by gas chromatography–mass spectrometry (GC–MS) are studied. The QuEChERS technique and dispersive liquid–liquid microextraction (DLLME) were employed to extract PAHs from soils using acetone and binary extractants of various compositions, including acetonitrile–dichloromethane, acetonitrile–acetone, acetone–hexane, acetone–chloroform, acetone–dichloromethane, and ethyl acetate–dichloromethane. Recoveries of low- and medium-molecular-weight PAHs using these solvent mixtures reached approximately 100%, while the acetone–dichloromethane mixture yielded over 90% recovery for high-molecular-weight PAHs. Under optimized GC–MS conditions with QuEChERS extraction, the limits of quantification (LOQ) for fluoranthene, pyrene, chrysene, and triphenylene reached 5 µg/kg, and for the remaining PAHs, 10 µg/kg in humus-rich soils. It was shown that the reliable GC–MS determination of lower concentrations of PAHs requires both the elimination of the matrix effect and the preconcentration of the analytes. The sequential application of QuEChERS and DLLME techniques enabled a decrease in the limits of quantification by GC–MS to 1.8 µg/kg for fluoranthene, pyrene, chrysene, and triphenylene, and to 3.5 µg/kg for the remaining PAHs. The optimized procedure for PAH determination in humus-rich soils was validated using real chernozem samples.
期刊介绍:
The Journal of Analytical Chemistry is an international peer reviewed journal that covers theoretical and applied aspects of analytical chemistry; it informs the reader about new achievements in analytical methods, instruments and reagents. Ample space is devoted to problems arising in the analysis of vital media such as water and air. Consideration is given to the detection and determination of metal ions, anions, and various organic substances. The journal welcomes manuscripts from all countries in the English or Russian language.