Lanze Li, Jiexin Wen, Tsz Woon Benedict Lo, Jun Yin, Qiong Lei
{"title":"润湿性控制的电催化二氧化碳还原","authors":"Lanze Li, Jiexin Wen, Tsz Woon Benedict Lo, Jun Yin, Qiong Lei","doi":"10.1002/cmtd.202400080","DOIUrl":null,"url":null,"abstract":"<p>The electrocatalytic CO<sub>2</sub> reduction reaction (eCO<sub>2</sub>RR) offers a promising pathway for converting greenhouse gases into valuable fuels and chemicals using renewable energy. Beyond advancements in catalyst and electrolyzer design, significant opportunities lie in the strategic modulation of the gas–liquid–solid three-phase interface (TPI) on the catalyst surface. After revisiting the evolution from traditional liquid–solid double-phase interfaces to advanced gas–liquid–solid TPIs, this concept outlines major challenges in constructing stable TPIs on eCO<sub>2</sub>RR gas diffusion electrodes and reviews recent progress in TPI modulation through hydrophobicity enhancement. Further, achieving a delicate balance between hydrophobicity and hydrophilicity—optimal wettability—is crucial for optimizing TPI construction, and enhancing overall electrocatalytic performance is emphasized. This work provides valuable insights for designing efficient TPIs in eCO<sub>2</sub>RR and other gas-involved electrochemical processes, contributing to advancements in sustainable energy technologies.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"5 8","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202400080","citationCount":"0","resultStr":"{\"title\":\"Wettability-Controlled Electrocatalytic Carbon Dioxide Reduction\",\"authors\":\"Lanze Li, Jiexin Wen, Tsz Woon Benedict Lo, Jun Yin, Qiong Lei\",\"doi\":\"10.1002/cmtd.202400080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The electrocatalytic CO<sub>2</sub> reduction reaction (eCO<sub>2</sub>RR) offers a promising pathway for converting greenhouse gases into valuable fuels and chemicals using renewable energy. Beyond advancements in catalyst and electrolyzer design, significant opportunities lie in the strategic modulation of the gas–liquid–solid three-phase interface (TPI) on the catalyst surface. After revisiting the evolution from traditional liquid–solid double-phase interfaces to advanced gas–liquid–solid TPIs, this concept outlines major challenges in constructing stable TPIs on eCO<sub>2</sub>RR gas diffusion electrodes and reviews recent progress in TPI modulation through hydrophobicity enhancement. Further, achieving a delicate balance between hydrophobicity and hydrophilicity—optimal wettability—is crucial for optimizing TPI construction, and enhancing overall electrocatalytic performance is emphasized. This work provides valuable insights for designing efficient TPIs in eCO<sub>2</sub>RR and other gas-involved electrochemical processes, contributing to advancements in sustainable energy technologies.</p>\",\"PeriodicalId\":72562,\"journal\":{\"name\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"volume\":\"5 8\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202400080\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cmtd.202400080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cmtd.202400080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The electrocatalytic CO2 reduction reaction (eCO2RR) offers a promising pathway for converting greenhouse gases into valuable fuels and chemicals using renewable energy. Beyond advancements in catalyst and electrolyzer design, significant opportunities lie in the strategic modulation of the gas–liquid–solid three-phase interface (TPI) on the catalyst surface. After revisiting the evolution from traditional liquid–solid double-phase interfaces to advanced gas–liquid–solid TPIs, this concept outlines major challenges in constructing stable TPIs on eCO2RR gas diffusion electrodes and reviews recent progress in TPI modulation through hydrophobicity enhancement. Further, achieving a delicate balance between hydrophobicity and hydrophilicity—optimal wettability—is crucial for optimizing TPI construction, and enhancing overall electrocatalytic performance is emphasized. This work provides valuable insights for designing efficient TPIs in eCO2RR and other gas-involved electrochemical processes, contributing to advancements in sustainable energy technologies.