熔融铝钛合金的粘度

IF 2.9 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
Osamu Takeda, Hiroshi Yoneda, Yuzuru Sato
{"title":"熔融铝钛合金的粘度","authors":"Osamu Takeda,&nbsp;Hiroshi Yoneda,&nbsp;Yuzuru Sato","doi":"10.1007/s10765-025-03624-3","DOIUrl":null,"url":null,"abstract":"<div><p>The additive law of logarithmic viscosity of molten alloys is widely established. However, the logarithmic viscosity in the molten Al–Cu system deviates significantly from the additive law. In this system, the molar volume deviates significantly and negatively at intermediate compositions. Al–Ti system has the same characteristics; however, there are few reports on the viscosity of molten Al–Ti alloys. In this study, the viscosities of molten Al–0, 10, 20, 30, 40, 55 mol% Ti alloys were measured using the oscillating crucible method. The measured viscosities of all alloys exhibited good consistency in the heating and cooling processes, and the logarithmic viscosities showed good Arrhenius-type linearity. The viscosity increased significantly with increasing Ti concentration. The logarithmic viscosity of the alloys increased drastically with increasing Ti concentration, deviating considerably from the additive law in a similar manner to Al–Cu melts; notably, the degree of deviation was far greater. The activation energy exhibited a composition dependence similar to that of the logarithmic viscosity. However, the maximum value was observed on the Al-rich side. The activation energy in the Al–Ti system was significantly higher than that in the Al–Cu system, indicating that the attractive force between the Al and Ti atoms was significantly stronger than that between Al and Cu.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscosity of Molten Al–Ti Alloys\",\"authors\":\"Osamu Takeda,&nbsp;Hiroshi Yoneda,&nbsp;Yuzuru Sato\",\"doi\":\"10.1007/s10765-025-03624-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The additive law of logarithmic viscosity of molten alloys is widely established. However, the logarithmic viscosity in the molten Al–Cu system deviates significantly from the additive law. In this system, the molar volume deviates significantly and negatively at intermediate compositions. Al–Ti system has the same characteristics; however, there are few reports on the viscosity of molten Al–Ti alloys. In this study, the viscosities of molten Al–0, 10, 20, 30, 40, 55 mol% Ti alloys were measured using the oscillating crucible method. The measured viscosities of all alloys exhibited good consistency in the heating and cooling processes, and the logarithmic viscosities showed good Arrhenius-type linearity. The viscosity increased significantly with increasing Ti concentration. The logarithmic viscosity of the alloys increased drastically with increasing Ti concentration, deviating considerably from the additive law in a similar manner to Al–Cu melts; notably, the degree of deviation was far greater. The activation energy exhibited a composition dependence similar to that of the logarithmic viscosity. However, the maximum value was observed on the Al-rich side. The activation energy in the Al–Ti system was significantly higher than that in the Al–Cu system, indicating that the attractive force between the Al and Ti atoms was significantly stronger than that between Al and Cu.</p></div>\",\"PeriodicalId\":598,\"journal\":{\"name\":\"International Journal of Thermophysics\",\"volume\":\"46 10\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10765-025-03624-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-025-03624-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

合金熔液粘度的对数添加规律已被广泛建立。然而,Al-Cu熔融体系的对数粘度明显偏离加性规律。在这个体系中,摩尔体积在中间组分上有显著的负偏差。Al-Ti体系具有相同的特性;然而,关于铝钛合金熔融粘度的报道很少。本文采用振荡坩埚法测定了Al-0、10、20、30、40、55 mol% Ti合金的熔融粘度。在加热和冷却过程中,所有合金的粘度测量值均表现出良好的一致性,其对数粘度表现出良好的arrhenius型线性关系。随着Ti浓度的增加,粘度显著增加。随着Ti浓度的增加,合金的对数粘度急剧增加,与Al-Cu熔体类似,明显偏离了添加剂规律;值得注意的是,偏差的程度要大得多。活化能表现出与对数粘度相似的组分依赖性。然而,在富铝一侧观察到最大值。Al - Ti体系中的活化能明显高于Al - Cu体系中的活化能,说明Al与Ti原子之间的吸引力明显强于Al与Cu原子之间的吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Viscosity of Molten Al–Ti Alloys

Viscosity of Molten Al–Ti Alloys

Viscosity of Molten Al–Ti Alloys

The additive law of logarithmic viscosity of molten alloys is widely established. However, the logarithmic viscosity in the molten Al–Cu system deviates significantly from the additive law. In this system, the molar volume deviates significantly and negatively at intermediate compositions. Al–Ti system has the same characteristics; however, there are few reports on the viscosity of molten Al–Ti alloys. In this study, the viscosities of molten Al–0, 10, 20, 30, 40, 55 mol% Ti alloys were measured using the oscillating crucible method. The measured viscosities of all alloys exhibited good consistency in the heating and cooling processes, and the logarithmic viscosities showed good Arrhenius-type linearity. The viscosity increased significantly with increasing Ti concentration. The logarithmic viscosity of the alloys increased drastically with increasing Ti concentration, deviating considerably from the additive law in a similar manner to Al–Cu melts; notably, the degree of deviation was far greater. The activation energy exhibited a composition dependence similar to that of the logarithmic viscosity. However, the maximum value was observed on the Al-rich side. The activation energy in the Al–Ti system was significantly higher than that in the Al–Cu system, indicating that the attractive force between the Al and Ti atoms was significantly stronger than that between Al and Cu.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
9.10%
发文量
179
审稿时长
5 months
期刊介绍: International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信