基于SCAPS-1D的无cd Cu(In, Ga)Se2太阳能电池的数值模拟与缓冲层优化

IF 4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Keshun Nie, Yiran Liang, Xin Chen, Yunxiang Zhang, Jian Wang, Chenliang Zhou, Zhongjie Wang, Diab Khalafallah, Wei Liu, Qinfang Zhang
{"title":"基于SCAPS-1D的无cd Cu(In, Ga)Se2太阳能电池的数值模拟与缓冲层优化","authors":"Keshun Nie,&nbsp;Yiran Liang,&nbsp;Xin Chen,&nbsp;Yunxiang Zhang,&nbsp;Jian Wang,&nbsp;Chenliang Zhou,&nbsp;Zhongjie Wang,&nbsp;Diab Khalafallah,&nbsp;Wei Liu,&nbsp;Qinfang Zhang","doi":"10.1007/s11082-025-08418-3","DOIUrl":null,"url":null,"abstract":"<div><p>Copper indium gallium selenium (Cu(In, Ga)Se<sub>2</sub>, CIGS) thin-film solar cells have garnered significant attention as a promising solution to address the global energy crisis. However, the conventional cadmium sulfide (CdS) buffer layer presents inherent limitations, including optical absorption losses in the short-wavelength spectrum and environmental toxicity concerns. This study systematically evaluates three eco-friendly wide-bandgap alternatives, such as gallium selenide (Ga<sub>2</sub>Se<sub>3</sub>), zinc magnesium oxide (Zn<sub>0.8</sub>Mg<sub>0.2</sub>O), and zinc oxysulfide (Zn(O, S)), through comprehensive numerical simulations using SCAPS-1D. Initial comparative analysis reveals that Zn<sub>0.8</sub>Mg<sub>0.2</sub>O and Zn(O, S) demonstrate superior interfacial properties, particularly through their favorable conduction band alignment that effectively minimizes carrier recombination barriers at the buffer/absorber interface. Extended parametric studies on buffer layer thickness, operating temperature, doping concentration, sulfur composition in Zn(O, S), and the gallium ratio (Ga/(Ga + In)) in CIGS further establish Zn(O, S) as the most promising candidate. Optimized devices with Zn(O, S) buffers achieve enhanced carrier collection efficiency owing to their optimal band alignment and reduced interface defect states. This computational investigation provides critical insights for developing high-performance, cadmium-free CIGS photovoltaic devices through buffer layer engineering.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"57 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation and buffer layer optimization for Cd-free Cu(In, Ga)Se2 solar cells using SCAPS-1D\",\"authors\":\"Keshun Nie,&nbsp;Yiran Liang,&nbsp;Xin Chen,&nbsp;Yunxiang Zhang,&nbsp;Jian Wang,&nbsp;Chenliang Zhou,&nbsp;Zhongjie Wang,&nbsp;Diab Khalafallah,&nbsp;Wei Liu,&nbsp;Qinfang Zhang\",\"doi\":\"10.1007/s11082-025-08418-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Copper indium gallium selenium (Cu(In, Ga)Se<sub>2</sub>, CIGS) thin-film solar cells have garnered significant attention as a promising solution to address the global energy crisis. However, the conventional cadmium sulfide (CdS) buffer layer presents inherent limitations, including optical absorption losses in the short-wavelength spectrum and environmental toxicity concerns. This study systematically evaluates three eco-friendly wide-bandgap alternatives, such as gallium selenide (Ga<sub>2</sub>Se<sub>3</sub>), zinc magnesium oxide (Zn<sub>0.8</sub>Mg<sub>0.2</sub>O), and zinc oxysulfide (Zn(O, S)), through comprehensive numerical simulations using SCAPS-1D. Initial comparative analysis reveals that Zn<sub>0.8</sub>Mg<sub>0.2</sub>O and Zn(O, S) demonstrate superior interfacial properties, particularly through their favorable conduction band alignment that effectively minimizes carrier recombination barriers at the buffer/absorber interface. Extended parametric studies on buffer layer thickness, operating temperature, doping concentration, sulfur composition in Zn(O, S), and the gallium ratio (Ga/(Ga + In)) in CIGS further establish Zn(O, S) as the most promising candidate. Optimized devices with Zn(O, S) buffers achieve enhanced carrier collection efficiency owing to their optimal band alignment and reduced interface defect states. This computational investigation provides critical insights for developing high-performance, cadmium-free CIGS photovoltaic devices through buffer layer engineering.</p></div>\",\"PeriodicalId\":720,\"journal\":{\"name\":\"Optical and Quantum Electronics\",\"volume\":\"57 9\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical and Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11082-025-08418-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-025-08418-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

铜铟镓硒(Cu(In, Ga)Se2, CIGS)薄膜太阳能电池作为解决全球能源危机的一种有希望的解决方案受到了广泛关注。然而,传统的硫化镉缓冲层存在固有的局限性,包括短波光谱中的光吸收损失和环境毒性问题。本研究通过SCAPS-1D的综合数值模拟,系统评价了硒化镓(Ga2Se3)、氧化锌镁(zn0.8 mg0.2)和氧化硫化锌(Zn(O, S))三种生态友好型宽禁带替代品。初步的对比分析表明,zn0.8 mg0.2和Zn(O, S)表现出优越的界面性能,特别是由于它们良好的导带排列,有效地减少了缓冲/吸收界面的载流子复合障碍。对缓冲层厚度、工作温度、掺杂浓度、Zn(O, S)中硫的组成以及CIGS中镓的比值(Ga/(Ga + in))的进一步参数化研究进一步确定Zn(O, S)是最有希望的候选材料。优化后的Zn(O, S)缓冲器器件由于具有最佳的带对准和减少的界面缺陷状态,从而提高了载流子收集效率。这项计算研究为通过缓冲层工程开发高性能、无镉CIGS光伏器件提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation and buffer layer optimization for Cd-free Cu(In, Ga)Se2 solar cells using SCAPS-1D

Copper indium gallium selenium (Cu(In, Ga)Se2, CIGS) thin-film solar cells have garnered significant attention as a promising solution to address the global energy crisis. However, the conventional cadmium sulfide (CdS) buffer layer presents inherent limitations, including optical absorption losses in the short-wavelength spectrum and environmental toxicity concerns. This study systematically evaluates three eco-friendly wide-bandgap alternatives, such as gallium selenide (Ga2Se3), zinc magnesium oxide (Zn0.8Mg0.2O), and zinc oxysulfide (Zn(O, S)), through comprehensive numerical simulations using SCAPS-1D. Initial comparative analysis reveals that Zn0.8Mg0.2O and Zn(O, S) demonstrate superior interfacial properties, particularly through their favorable conduction band alignment that effectively minimizes carrier recombination barriers at the buffer/absorber interface. Extended parametric studies on buffer layer thickness, operating temperature, doping concentration, sulfur composition in Zn(O, S), and the gallium ratio (Ga/(Ga + In)) in CIGS further establish Zn(O, S) as the most promising candidate. Optimized devices with Zn(O, S) buffers achieve enhanced carrier collection efficiency owing to their optimal band alignment and reduced interface defect states. This computational investigation provides critical insights for developing high-performance, cadmium-free CIGS photovoltaic devices through buffer layer engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical and Quantum Electronics
Optical and Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.60
自引率
20.00%
发文量
810
审稿时长
3.8 months
期刊介绍: Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest. Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信