具有焦耳效应的稳态磁流体动力-热系统的混合边值问题

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Tujin Kim
{"title":"具有焦耳效应的稳态磁流体动力-热系统的混合边值问题","authors":"Tujin Kim","doi":"10.1007/s00021-025-00968-6","DOIUrl":null,"url":null,"abstract":"<div><p>We are concerned with the steady Magnetohydrodynamics(MHD)-heat system with Joule effects under mixed boundary conditions. The boundary conditions for fluid may include the stick, pressure (or total pressure), vorticity, stress (or total stress) and friction types (Tresca slip, leak, one-sided leaks) boundary conditions together and for the electromagnetic field non-homogeneous mixed boundary conditions are given. The conditions for temperature may include non-homogeneous Dirichlet, Neumann and Robin conditions together. The viscosity, magnetic permeability, electrical conductivity, thermal conductivity and specific heat of the fluid depend on the temperature. The domain for fluid is not assumed to be simply connected. For the problem involving the static pressure and stress boundary conditions for fluid it is proved that if the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field and the data of problem are small enough, then there exists a solution. For the problem involving the total pressure and total stress boundary conditions for fluid, the existence of a solution is proved when the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field is small, but without the auxiliary smallness of the other data of problem. In addition (Appendix), a very simple proof of the fact that vorticity quadratic form for vector fields with mixed boundary conditions is positive-definite, which has been known in a previous paper and is used in this paper, is given.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Mixed Boundary Value Problems for the Steady Magnetohydrodynamics-Heat System with Joule Effects\",\"authors\":\"Tujin Kim\",\"doi\":\"10.1007/s00021-025-00968-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We are concerned with the steady Magnetohydrodynamics(MHD)-heat system with Joule effects under mixed boundary conditions. The boundary conditions for fluid may include the stick, pressure (or total pressure), vorticity, stress (or total stress) and friction types (Tresca slip, leak, one-sided leaks) boundary conditions together and for the electromagnetic field non-homogeneous mixed boundary conditions are given. The conditions for temperature may include non-homogeneous Dirichlet, Neumann and Robin conditions together. The viscosity, magnetic permeability, electrical conductivity, thermal conductivity and specific heat of the fluid depend on the temperature. The domain for fluid is not assumed to be simply connected. For the problem involving the static pressure and stress boundary conditions for fluid it is proved that if the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field and the data of problem are small enough, then there exists a solution. For the problem involving the total pressure and total stress boundary conditions for fluid, the existence of a solution is proved when the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field is small, but without the auxiliary smallness of the other data of problem. In addition (Appendix), a very simple proof of the fact that vorticity quadratic form for vector fields with mixed boundary conditions is positive-definite, which has been known in a previous paper and is used in this paper, is given.</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-025-00968-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-025-00968-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了混合边界条件下具有焦耳效应的稳态磁流体动力学-热系统。流体的边界条件可以包括粘滞、压力(或总压)、涡量、应力(或总应力)和摩擦类型(Tresca滑移、泄漏、单侧泄漏)的边界条件,并给出了电磁场的非均匀混合边界条件。温度条件可以包括非齐次狄利克雷条件、诺伊曼条件和罗宾条件。流体的粘度、磁导率、电导率、导热率和比热取决于温度。流体的域不假设为单连通。对于涉及流体静压和应力边界条件的问题,证明了如果浮力效应的参数根据问题的数据很小,关于磁场的非均匀混合边界条件的基准和问题的数据足够小,则存在一个解。对于涉及流体总压和总应力边界条件的问题,根据问题的数据证明了浮力效应参数较小时解的存在性,磁场的非均匀混合边界条件的数据较小,但没有问题其他数据的辅助小性。此外(附录),给出了一个很简单的证明,证明了具有混合边界条件的矢量场的涡度二次型是正定的,这个证明在以前的文章中已经知道,并在本文中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Mixed Boundary Value Problems for the Steady Magnetohydrodynamics-Heat System with Joule Effects

We are concerned with the steady Magnetohydrodynamics(MHD)-heat system with Joule effects under mixed boundary conditions. The boundary conditions for fluid may include the stick, pressure (or total pressure), vorticity, stress (or total stress) and friction types (Tresca slip, leak, one-sided leaks) boundary conditions together and for the electromagnetic field non-homogeneous mixed boundary conditions are given. The conditions for temperature may include non-homogeneous Dirichlet, Neumann and Robin conditions together. The viscosity, magnetic permeability, electrical conductivity, thermal conductivity and specific heat of the fluid depend on the temperature. The domain for fluid is not assumed to be simply connected. For the problem involving the static pressure and stress boundary conditions for fluid it is proved that if the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field and the data of problem are small enough, then there exists a solution. For the problem involving the total pressure and total stress boundary conditions for fluid, the existence of a solution is proved when the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field is small, but without the auxiliary smallness of the other data of problem. In addition (Appendix), a very simple proof of the fact that vorticity quadratic form for vector fields with mixed boundary conditions is positive-definite, which has been known in a previous paper and is used in this paper, is given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信