{"title":"间接分光光度法测定环境样品中乐果和甲氧咪酮杀虫剂","authors":"Nisha Sharma, Srishti Shekhar","doi":"10.1134/S1061934825700686","DOIUrl":null,"url":null,"abstract":"<p>Insecticides like dimethoate and oxydemeton-methyl are essential for crop protection, supporting food production. However, their overuse raises environmental and food safety concerns due to contamination and residues. A new spectrophotometric method was developed to monitor these insecticides in formulations and environmental samples such as water, grains, and vegetables. The proposed method is based on the redox reaction of the thiol (the hydrolytic product formed in an alkaline medium) in both insecticides, with ferric chloride, leading to the formation of Fe<sup>2+</sup>, which subsequently reacts with 1,10<b>-</b>phenanthroline to form colored complexes, measurable at 510 nm. The method obeys Beer’s law within the concentration ranges of 0.46–13.74 µg/mL for dimethoate and 0.49–14.76 µg/mL for oxydemeton-methyl. Reaction parameters such as hydrolysis time, solvent type, heating time, and reagent concentration were optimized to enhance the sensitivity and stability of the method. The recovery results from water and environmental samples demonstrated the good accuracy and precision of the method, with recoveries of 89–100.8% for dimethoate and 89.9–99% for oxydemeton-methyl, and a relative standard deviation of 0.29–1.96 and 0.23–1.91% for dimethoate and oxydemeton-methyl, respectively.</p>","PeriodicalId":606,"journal":{"name":"Journal of Analytical Chemistry","volume":"80 8","pages":"1434 - 1444"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indirect Spectrophotometric Method for the Determination of Dimethoate and Oxydemeton-Methyl Insecticides in Environmental Samples\",\"authors\":\"Nisha Sharma, Srishti Shekhar\",\"doi\":\"10.1134/S1061934825700686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Insecticides like dimethoate and oxydemeton-methyl are essential for crop protection, supporting food production. However, their overuse raises environmental and food safety concerns due to contamination and residues. A new spectrophotometric method was developed to monitor these insecticides in formulations and environmental samples such as water, grains, and vegetables. The proposed method is based on the redox reaction of the thiol (the hydrolytic product formed in an alkaline medium) in both insecticides, with ferric chloride, leading to the formation of Fe<sup>2+</sup>, which subsequently reacts with 1,10<b>-</b>phenanthroline to form colored complexes, measurable at 510 nm. The method obeys Beer’s law within the concentration ranges of 0.46–13.74 µg/mL for dimethoate and 0.49–14.76 µg/mL for oxydemeton-methyl. Reaction parameters such as hydrolysis time, solvent type, heating time, and reagent concentration were optimized to enhance the sensitivity and stability of the method. The recovery results from water and environmental samples demonstrated the good accuracy and precision of the method, with recoveries of 89–100.8% for dimethoate and 89.9–99% for oxydemeton-methyl, and a relative standard deviation of 0.29–1.96 and 0.23–1.91% for dimethoate and oxydemeton-methyl, respectively.</p>\",\"PeriodicalId\":606,\"journal\":{\"name\":\"Journal of Analytical Chemistry\",\"volume\":\"80 8\",\"pages\":\"1434 - 1444\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061934825700686\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061934825700686","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Indirect Spectrophotometric Method for the Determination of Dimethoate and Oxydemeton-Methyl Insecticides in Environmental Samples
Insecticides like dimethoate and oxydemeton-methyl are essential for crop protection, supporting food production. However, their overuse raises environmental and food safety concerns due to contamination and residues. A new spectrophotometric method was developed to monitor these insecticides in formulations and environmental samples such as water, grains, and vegetables. The proposed method is based on the redox reaction of the thiol (the hydrolytic product formed in an alkaline medium) in both insecticides, with ferric chloride, leading to the formation of Fe2+, which subsequently reacts with 1,10-phenanthroline to form colored complexes, measurable at 510 nm. The method obeys Beer’s law within the concentration ranges of 0.46–13.74 µg/mL for dimethoate and 0.49–14.76 µg/mL for oxydemeton-methyl. Reaction parameters such as hydrolysis time, solvent type, heating time, and reagent concentration were optimized to enhance the sensitivity and stability of the method. The recovery results from water and environmental samples demonstrated the good accuracy and precision of the method, with recoveries of 89–100.8% for dimethoate and 89.9–99% for oxydemeton-methyl, and a relative standard deviation of 0.29–1.96 and 0.23–1.91% for dimethoate and oxydemeton-methyl, respectively.
期刊介绍:
The Journal of Analytical Chemistry is an international peer reviewed journal that covers theoretical and applied aspects of analytical chemistry; it informs the reader about new achievements in analytical methods, instruments and reagents. Ample space is devoted to problems arising in the analysis of vital media such as water and air. Consideration is given to the detection and determination of metal ions, anions, and various organic substances. The journal welcomes manuscripts from all countries in the English or Russian language.