Xiaoyu Zhang, Yingyi Pan, Hai Liu, Jie Cui, Chao Liu
{"title":"基于模糊多准则决策方法的层状可液化海底盾构隧道IM优化选择","authors":"Xiaoyu Zhang, Yingyi Pan, Hai Liu, Jie Cui, Chao Liu","doi":"10.1007/s11440-025-02618-7","DOIUrl":null,"url":null,"abstract":"<div><p>Selecting the optimal intensity measure (IM) is essential for accurately assessing the seismic performance of the submarine shield tunnels in the layered liquefiable seabed. However, current research relies on simplistic ranking or filtering methods that neglect the different contributions of each evaluation criterion on IM’s overall performance. To address this, this study begins by developing a numerical simulation method for nonlinear dynamic analysis, considering joint deformation, ocean environmental loads, and soil liquefaction, which is validated by experimental and theoretical methods. Subsequently, a fuzzy multiple criteria decision-making (FMCDM) method based on fuzzy probabilistic seismic demand models (FPSDM) is proposed, which integrates the fuzzy analytical hierarchical process (FAHP) for calculating weights and the fuzzy technique for order preference by similarity to ideal solution (FTOPSIS) for ranking IM alternatives. Finally, tunnel damage is classified into four states employing joint opening as the index for measuring damage, then the seismic fragility analysis is conducted. The results indicate that the optimal IM of a submarine shield tunnel situated in layered liquefiable seabed is sustained maximum velocity (SMV). Furthermore, the comparison between the fragility curves established using SMV and peak ground acceleration (PGA) reveals PGA, a frequently employed IM, notably undervaluing the seismic hazard.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"20 9","pages":"4817 - 4839"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal IM selection using fuzzy multiple criteria decision-making method for submarine shield tunnel in layered liquefiable seabed\",\"authors\":\"Xiaoyu Zhang, Yingyi Pan, Hai Liu, Jie Cui, Chao Liu\",\"doi\":\"10.1007/s11440-025-02618-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Selecting the optimal intensity measure (IM) is essential for accurately assessing the seismic performance of the submarine shield tunnels in the layered liquefiable seabed. However, current research relies on simplistic ranking or filtering methods that neglect the different contributions of each evaluation criterion on IM’s overall performance. To address this, this study begins by developing a numerical simulation method for nonlinear dynamic analysis, considering joint deformation, ocean environmental loads, and soil liquefaction, which is validated by experimental and theoretical methods. Subsequently, a fuzzy multiple criteria decision-making (FMCDM) method based on fuzzy probabilistic seismic demand models (FPSDM) is proposed, which integrates the fuzzy analytical hierarchical process (FAHP) for calculating weights and the fuzzy technique for order preference by similarity to ideal solution (FTOPSIS) for ranking IM alternatives. Finally, tunnel damage is classified into four states employing joint opening as the index for measuring damage, then the seismic fragility analysis is conducted. The results indicate that the optimal IM of a submarine shield tunnel situated in layered liquefiable seabed is sustained maximum velocity (SMV). Furthermore, the comparison between the fragility curves established using SMV and peak ground acceleration (PGA) reveals PGA, a frequently employed IM, notably undervaluing the seismic hazard.</p></div>\",\"PeriodicalId\":49308,\"journal\":{\"name\":\"Acta Geotechnica\",\"volume\":\"20 9\",\"pages\":\"4817 - 4839\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geotechnica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11440-025-02618-7\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-025-02618-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Optimal IM selection using fuzzy multiple criteria decision-making method for submarine shield tunnel in layered liquefiable seabed
Selecting the optimal intensity measure (IM) is essential for accurately assessing the seismic performance of the submarine shield tunnels in the layered liquefiable seabed. However, current research relies on simplistic ranking or filtering methods that neglect the different contributions of each evaluation criterion on IM’s overall performance. To address this, this study begins by developing a numerical simulation method for nonlinear dynamic analysis, considering joint deformation, ocean environmental loads, and soil liquefaction, which is validated by experimental and theoretical methods. Subsequently, a fuzzy multiple criteria decision-making (FMCDM) method based on fuzzy probabilistic seismic demand models (FPSDM) is proposed, which integrates the fuzzy analytical hierarchical process (FAHP) for calculating weights and the fuzzy technique for order preference by similarity to ideal solution (FTOPSIS) for ranking IM alternatives. Finally, tunnel damage is classified into four states employing joint opening as the index for measuring damage, then the seismic fragility analysis is conducted. The results indicate that the optimal IM of a submarine shield tunnel situated in layered liquefiable seabed is sustained maximum velocity (SMV). Furthermore, the comparison between the fragility curves established using SMV and peak ground acceleration (PGA) reveals PGA, a frequently employed IM, notably undervaluing the seismic hazard.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.