饱和度对多孔介质中蒸发驱动密度不稳定性的影响:数学和数值分析

IF 2.6 3区 工程技术 Q3 ENGINEERING, CHEMICAL
C. Bringedal, S. Kiemle, C. J. van Duijn, R. Helmig
{"title":"饱和度对多孔介质中蒸发驱动密度不稳定性的影响:数学和数值分析","authors":"C. Bringedal,&nbsp;S. Kiemle,&nbsp;C. J. van Duijn,&nbsp;R. Helmig","doi":"10.1007/s11242-025-02207-y","DOIUrl":null,"url":null,"abstract":"<div><p>Evaporation from a porous medium partially saturated with saline water, causes the salinity (salt concentration) to increase near the top of the porous medium as water leaves while salt stays behind. As the density of the water increases with increased salt concentration, the evaporation leads to a gravitational unstable setting, where density instabilities can form. Whether density instabilities form, depends on a large range of parameters like the evaporation rate and intrinsic permeability of the porous medium, but also on the water saturation. As water saturation decreases, the storage, convection and diffusion of salt also decrease, which all influence the onset of instabilities. By performing a linear stability analysis on the governing equations, we give criteria for onset of instabilities, with a particular focus on impact of saturation. While decreased storage and diffusion make onset of instabilities more unstable, decreased convection has a stabilizing effect on the onset of instabilities. We find that their combined influence is that lower saturation overall gives earlier onset times. Numerical simulations give information about the further development of these instabilities. With this knowledge we can predict whether and when density instabilities occur, and how they will influence the further development of salt concentration in the porous medium.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"152 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-025-02207-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Impact of Saturation on Evaporation-Driven Density Instabilities in Porous Media: Mathematical and Numerical Analysis\",\"authors\":\"C. Bringedal,&nbsp;S. Kiemle,&nbsp;C. J. van Duijn,&nbsp;R. Helmig\",\"doi\":\"10.1007/s11242-025-02207-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Evaporation from a porous medium partially saturated with saline water, causes the salinity (salt concentration) to increase near the top of the porous medium as water leaves while salt stays behind. As the density of the water increases with increased salt concentration, the evaporation leads to a gravitational unstable setting, where density instabilities can form. Whether density instabilities form, depends on a large range of parameters like the evaporation rate and intrinsic permeability of the porous medium, but also on the water saturation. As water saturation decreases, the storage, convection and diffusion of salt also decrease, which all influence the onset of instabilities. By performing a linear stability analysis on the governing equations, we give criteria for onset of instabilities, with a particular focus on impact of saturation. While decreased storage and diffusion make onset of instabilities more unstable, decreased convection has a stabilizing effect on the onset of instabilities. We find that their combined influence is that lower saturation overall gives earlier onset times. Numerical simulations give information about the further development of these instabilities. With this knowledge we can predict whether and when density instabilities occur, and how they will influence the further development of salt concentration in the porous medium.</p></div>\",\"PeriodicalId\":804,\"journal\":{\"name\":\"Transport in Porous Media\",\"volume\":\"152 10\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11242-025-02207-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport in Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11242-025-02207-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-025-02207-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

部分含盐水饱和的多孔介质的蒸发会导致多孔介质顶部附近的盐度(盐浓度)增加,因为水离开而盐留在后面。当水的密度随着盐浓度的增加而增加时,蒸发会导致重力不稳定,从而形成密度不稳定。密度不稳定性是否形成,取决于大范围的参数,如蒸发速率和多孔介质的本征渗透率,但也取决于含水饱和度。随着含水饱和度的降低,盐的储存、对流和扩散也会减少,这些都会影响不稳定的发生。通过对控制方程进行线性稳定性分析,我们给出了不稳定性开始的标准,特别关注饱和的影响。虽然储存和扩散的减少使不稳定的开始更加不稳定,但对流的减少对不稳定的开始有稳定作用。我们发现它们的综合影响是,总体上较低的饱和度会使发病时间提前。数值模拟提供了这些不稳定性进一步发展的信息。有了这些知识,我们可以预测密度不稳定是否以及何时发生,以及它们将如何影响多孔介质中盐浓度的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Saturation on Evaporation-Driven Density Instabilities in Porous Media: Mathematical and Numerical Analysis

Evaporation from a porous medium partially saturated with saline water, causes the salinity (salt concentration) to increase near the top of the porous medium as water leaves while salt stays behind. As the density of the water increases with increased salt concentration, the evaporation leads to a gravitational unstable setting, where density instabilities can form. Whether density instabilities form, depends on a large range of parameters like the evaporation rate and intrinsic permeability of the porous medium, but also on the water saturation. As water saturation decreases, the storage, convection and diffusion of salt also decrease, which all influence the onset of instabilities. By performing a linear stability analysis on the governing equations, we give criteria for onset of instabilities, with a particular focus on impact of saturation. While decreased storage and diffusion make onset of instabilities more unstable, decreased convection has a stabilizing effect on the onset of instabilities. We find that their combined influence is that lower saturation overall gives earlier onset times. Numerical simulations give information about the further development of these instabilities. With this knowledge we can predict whether and when density instabilities occur, and how they will influence the further development of salt concentration in the porous medium.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transport in Porous Media
Transport in Porous Media 工程技术-工程:化工
CiteScore
5.30
自引率
7.40%
发文量
155
审稿时长
4.2 months
期刊介绍: -Publishes original research on physical, chemical, and biological aspects of transport in porous media- Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)- Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications- Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes- Expanded in 2007 from 12 to 15 issues per year. Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信