Z. A. Temerdashev, P. G. Abakumov, A. G. Abakumov, M. A. Bol’shov
{"title":"自然水体中无机砷的微萃取分离及电感耦合等离子体质谱测定","authors":"Z. A. Temerdashev, P. G. Abakumov, A. G. Abakumov, M. A. Bol’shov","doi":"10.1134/S1061934825700613","DOIUrl":null,"url":null,"abstract":"<p>The results of microextraction separation and ICP–MS determination of inorganic arsenic species in natural waters are presented. The necessity of the separate quantification of analytes is justified, as arsenites exhibit toxicity dozens of times higher than arsenates. Separation was performed by the selective liquid–liquid microextraction of As(III) complexes with sodium diethyldithiocarbamate into an organic phase. Extraction conditions were optimized to achieve the highest recovery of As(III) complexes at approximately 95%. The As(III) complexes with sodium diethyldithiocarbamate were extracted into the organic phase using carbon tetrachloride as an extractant and methanol as a dispersant. Matrix effects of elements on analyte extraction from water were eliminated by performing a double microextraction of the analytes. Total inorganic arsenic and As(V) concentrations were determined by an ICP–MS analysis of the original water samples and their aqueous extracts obtained after the separation of inorganic arsenic species. The concentration of As(III) in water was calculated as the difference between total arsenic and As(V) concentrations. The limits of detection for As(III) and As(V) in water were equal, at 0.010 μg/L, within a linearity range of 0.05 to 100 μg/L, <i>R</i><sup>2</sup> = 0.9998. The accuracy of the determination of inorganic arsenic species in water was confirmed by the standard addition method. The analytical procedure was validated using model waters and real samples of drinking and natural waters.</p>","PeriodicalId":606,"journal":{"name":"Journal of Analytical Chemistry","volume":"80 8","pages":"1345 - 1353"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microextraction Separation and Determination of Inorganic Arsenic Species by Inductively Coupled Plasma Mass Spectrometry in Natural Waters\",\"authors\":\"Z. A. Temerdashev, P. G. Abakumov, A. G. Abakumov, M. A. Bol’shov\",\"doi\":\"10.1134/S1061934825700613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The results of microextraction separation and ICP–MS determination of inorganic arsenic species in natural waters are presented. The necessity of the separate quantification of analytes is justified, as arsenites exhibit toxicity dozens of times higher than arsenates. Separation was performed by the selective liquid–liquid microextraction of As(III) complexes with sodium diethyldithiocarbamate into an organic phase. Extraction conditions were optimized to achieve the highest recovery of As(III) complexes at approximately 95%. The As(III) complexes with sodium diethyldithiocarbamate were extracted into the organic phase using carbon tetrachloride as an extractant and methanol as a dispersant. Matrix effects of elements on analyte extraction from water were eliminated by performing a double microextraction of the analytes. Total inorganic arsenic and As(V) concentrations were determined by an ICP–MS analysis of the original water samples and their aqueous extracts obtained after the separation of inorganic arsenic species. The concentration of As(III) in water was calculated as the difference between total arsenic and As(V) concentrations. The limits of detection for As(III) and As(V) in water were equal, at 0.010 μg/L, within a linearity range of 0.05 to 100 μg/L, <i>R</i><sup>2</sup> = 0.9998. The accuracy of the determination of inorganic arsenic species in water was confirmed by the standard addition method. The analytical procedure was validated using model waters and real samples of drinking and natural waters.</p>\",\"PeriodicalId\":606,\"journal\":{\"name\":\"Journal of Analytical Chemistry\",\"volume\":\"80 8\",\"pages\":\"1345 - 1353\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061934825700613\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061934825700613","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Microextraction Separation and Determination of Inorganic Arsenic Species by Inductively Coupled Plasma Mass Spectrometry in Natural Waters
The results of microextraction separation and ICP–MS determination of inorganic arsenic species in natural waters are presented. The necessity of the separate quantification of analytes is justified, as arsenites exhibit toxicity dozens of times higher than arsenates. Separation was performed by the selective liquid–liquid microextraction of As(III) complexes with sodium diethyldithiocarbamate into an organic phase. Extraction conditions were optimized to achieve the highest recovery of As(III) complexes at approximately 95%. The As(III) complexes with sodium diethyldithiocarbamate were extracted into the organic phase using carbon tetrachloride as an extractant and methanol as a dispersant. Matrix effects of elements on analyte extraction from water were eliminated by performing a double microextraction of the analytes. Total inorganic arsenic and As(V) concentrations were determined by an ICP–MS analysis of the original water samples and their aqueous extracts obtained after the separation of inorganic arsenic species. The concentration of As(III) in water was calculated as the difference between total arsenic and As(V) concentrations. The limits of detection for As(III) and As(V) in water were equal, at 0.010 μg/L, within a linearity range of 0.05 to 100 μg/L, R2 = 0.9998. The accuracy of the determination of inorganic arsenic species in water was confirmed by the standard addition method. The analytical procedure was validated using model waters and real samples of drinking and natural waters.
期刊介绍:
The Journal of Analytical Chemistry is an international peer reviewed journal that covers theoretical and applied aspects of analytical chemistry; it informs the reader about new achievements in analytical methods, instruments and reagents. Ample space is devoted to problems arising in the analysis of vital media such as water and air. Consideration is given to the detection and determination of metal ions, anions, and various organic substances. The journal welcomes manuscripts from all countries in the English or Russian language.