固体支撑上膜孔边缘的线张力

IF 1.4 Q4 CELL BIOLOGY
D. I. Kostina, M. V. Sumarokova, S. P. Dudik, P. V. Bashkirov, S. A. Akimov
{"title":"固体支撑上膜孔边缘的线张力","authors":"D. I. Kostina,&nbsp;M. V. Sumarokova,&nbsp;S. P. Dudik,&nbsp;P. V. Bashkirov,&nbsp;S. A. Akimov","doi":"10.1134/S1990747825700217","DOIUrl":null,"url":null,"abstract":"<p>Controlled formation of through pores in bilayer lipid membranes is a key stage of various biotechnological techniques. Excess energy of the pore edge is characterized by line tension, the value of which determines the overall stability of the membrane with respect to pore formation. The practically important pore size is on the order of a few nanometers. It is impossible to study such pores by direct optical methods, but they can, in principle, be visualized by atomic force microscopy. This method uses a solid support on which the lipid bilayer is held due to the interaction of one of the monolayers with it. In this work, we theoretically investigated the effect of the presence of the support on the value of the line tension of the pore edge. It was assumed that the line tension is determined by the energy of elastic deformation of the membrane at the edge. Various regimes of membrane interaction with the support were considered: from a free-standing membrane (complete absence of interaction) to the case of infinitely strong adhesion of the membrane to the support. The calculation results show that the relative change in the line tension of the pore edge within such variation of the intensity of the interaction of the membrane with the support is less than 3.5%. Thus, the developed theoretical model predicts an extremely weak effect of the interaction with the support on the magnitude of the line tension–the main energy characteristic of the pore edge.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"19 3","pages":"259 - 267"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Line Tension of Pore Edge in Membrane on Solid Support\",\"authors\":\"D. I. Kostina,&nbsp;M. V. Sumarokova,&nbsp;S. P. Dudik,&nbsp;P. V. Bashkirov,&nbsp;S. A. Akimov\",\"doi\":\"10.1134/S1990747825700217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Controlled formation of through pores in bilayer lipid membranes is a key stage of various biotechnological techniques. Excess energy of the pore edge is characterized by line tension, the value of which determines the overall stability of the membrane with respect to pore formation. The practically important pore size is on the order of a few nanometers. It is impossible to study such pores by direct optical methods, but they can, in principle, be visualized by atomic force microscopy. This method uses a solid support on which the lipid bilayer is held due to the interaction of one of the monolayers with it. In this work, we theoretically investigated the effect of the presence of the support on the value of the line tension of the pore edge. It was assumed that the line tension is determined by the energy of elastic deformation of the membrane at the edge. Various regimes of membrane interaction with the support were considered: from a free-standing membrane (complete absence of interaction) to the case of infinitely strong adhesion of the membrane to the support. The calculation results show that the relative change in the line tension of the pore edge within such variation of the intensity of the interaction of the membrane with the support is less than 3.5%. Thus, the developed theoretical model predicts an extremely weak effect of the interaction with the support on the magnitude of the line tension–the main energy characteristic of the pore edge.</p>\",\"PeriodicalId\":484,\"journal\":{\"name\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"volume\":\"19 3\",\"pages\":\"259 - 267\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990747825700217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747825700217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

控制双分子层脂质膜通孔的形成是各种生物技术的关键阶段。孔隙边缘的多余能量以线张力为特征,其值决定了膜在孔隙形成方面的整体稳定性。实际重要的孔隙尺寸在几纳米量级。用直接的光学方法来研究这些孔隙是不可能的,但原则上,它们可以用原子力显微镜来观察。这种方法使用固体支撑,由于其中一个单分子层与它的相互作用,脂质双分子层被保持在固体支撑上。在这项工作中,我们从理论上研究了支撑的存在对孔隙边缘线张力值的影响。假设线张力由边缘膜的弹性变形能决定。考虑了膜与支架相互作用的各种机制:从独立的膜(完全没有相互作用)到膜与支架的无限强粘附的情况。计算结果表明,在膜与支架相互作用强度变化范围内,孔隙边缘线张力的相对变化量小于3.5%。因此,所开发的理论模型预测,与支架的相互作用对线张力大小的影响非常微弱,而线张力是孔隙边缘的主要能量特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Line Tension of Pore Edge in Membrane on Solid Support

Line Tension of Pore Edge in Membrane on Solid Support

Controlled formation of through pores in bilayer lipid membranes is a key stage of various biotechnological techniques. Excess energy of the pore edge is characterized by line tension, the value of which determines the overall stability of the membrane with respect to pore formation. The practically important pore size is on the order of a few nanometers. It is impossible to study such pores by direct optical methods, but they can, in principle, be visualized by atomic force microscopy. This method uses a solid support on which the lipid bilayer is held due to the interaction of one of the monolayers with it. In this work, we theoretically investigated the effect of the presence of the support on the value of the line tension of the pore edge. It was assumed that the line tension is determined by the energy of elastic deformation of the membrane at the edge. Various regimes of membrane interaction with the support were considered: from a free-standing membrane (complete absence of interaction) to the case of infinitely strong adhesion of the membrane to the support. The calculation results show that the relative change in the line tension of the pore edge within such variation of the intensity of the interaction of the membrane with the support is less than 3.5%. Thus, the developed theoretical model predicts an extremely weak effect of the interaction with the support on the magnitude of the line tension–the main energy characteristic of the pore edge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
28
期刊介绍: Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology   is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信