基于阻抗梯度结构的高效均匀连续流微波加热系统

IF 4.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Jingxin Du, Jiahui Cai, Juxiang Tang, Hua Zhang, Shu Peng, Tao Hong, Huacheng Zhu
{"title":"基于阻抗梯度结构的高效均匀连续流微波加热系统","authors":"Jingxin Du,&nbsp;Jiahui Cai,&nbsp;Juxiang Tang,&nbsp;Hua Zhang,&nbsp;Shu Peng,&nbsp;Tao Hong,&nbsp;Huacheng Zhu","doi":"10.1007/s11705-025-2601-y","DOIUrl":null,"url":null,"abstract":"<div><p>Continuous-flow microwave-assisted heating has been extensively applied in chemical engineering. A common method used for heating fluids is by using a tube in a cavity. However, it is challenging to maintain high heating efficiency owing to the temperature-dependent dielectric properties of different fluids, and the temperature of fluids is usually uneven. In this study, a multilayer ring structure is proposed based on an impedance gradient that covers a tube with a porous material inside it to achieve high heating efficiency and uniformity. A multiphysics model, including electromagnetic fields, fluid heat transfer, and free and porous media flow, was established to simulate the continuous-flow microwave heating process. The dimensions of the multilayer ring structure were optimized and manufactured. Energy utilization efficiency experiments and continuous heating experiments were conducted, which demonstrated that the proposed model achieved an efficiency &gt; 90% with different aqueous ethanol solutions, while maintaining high heating uniformity compared with other heating models. Furthermore, the effects of the tube permittivity and porosity of the porous material on the heating efficiency were investigated to demonstrate the robustness of the proposed model.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 9","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-efficiency and uniformity continuous-flow microwave heating system based on impedance gradient structure\",\"authors\":\"Jingxin Du,&nbsp;Jiahui Cai,&nbsp;Juxiang Tang,&nbsp;Hua Zhang,&nbsp;Shu Peng,&nbsp;Tao Hong,&nbsp;Huacheng Zhu\",\"doi\":\"10.1007/s11705-025-2601-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Continuous-flow microwave-assisted heating has been extensively applied in chemical engineering. A common method used for heating fluids is by using a tube in a cavity. However, it is challenging to maintain high heating efficiency owing to the temperature-dependent dielectric properties of different fluids, and the temperature of fluids is usually uneven. In this study, a multilayer ring structure is proposed based on an impedance gradient that covers a tube with a porous material inside it to achieve high heating efficiency and uniformity. A multiphysics model, including electromagnetic fields, fluid heat transfer, and free and porous media flow, was established to simulate the continuous-flow microwave heating process. The dimensions of the multilayer ring structure were optimized and manufactured. Energy utilization efficiency experiments and continuous heating experiments were conducted, which demonstrated that the proposed model achieved an efficiency &gt; 90% with different aqueous ethanol solutions, while maintaining high heating uniformity compared with other heating models. Furthermore, the effects of the tube permittivity and porosity of the porous material on the heating efficiency were investigated to demonstrate the robustness of the proposed model.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"19 9\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-025-2601-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2601-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

连续流微波辅助加热在化工中得到了广泛的应用。加热流体的一种常用方法是在空腔中使用一根管子。然而,由于不同流体的介电特性随温度的变化而变化,并且流体的温度通常是不均匀的,因此保持较高的加热效率是一项挑战。本研究提出了一种基于阻抗梯度的多层环形结构,该结构在管内覆盖多孔材料,以获得较高的加热效率和均匀性。建立了包括电磁场、流体传热、自由介质和多孔介质流动在内的多物理场模型,模拟了连续流微波加热过程。对多层环结构的尺寸进行了优化和制造。进行了能量利用效率实验和连续加热实验,结果表明,与其他加热模型相比,所提出的模型在不同乙醇水溶液下的效率达到了90%,同时保持了较高的加热均匀性。此外,研究了多孔材料的管介电常数和孔隙率对加热效率的影响,以证明所提出模型的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-efficiency and uniformity continuous-flow microwave heating system based on impedance gradient structure

Continuous-flow microwave-assisted heating has been extensively applied in chemical engineering. A common method used for heating fluids is by using a tube in a cavity. However, it is challenging to maintain high heating efficiency owing to the temperature-dependent dielectric properties of different fluids, and the temperature of fluids is usually uneven. In this study, a multilayer ring structure is proposed based on an impedance gradient that covers a tube with a porous material inside it to achieve high heating efficiency and uniformity. A multiphysics model, including electromagnetic fields, fluid heat transfer, and free and porous media flow, was established to simulate the continuous-flow microwave heating process. The dimensions of the multilayer ring structure were optimized and manufactured. Energy utilization efficiency experiments and continuous heating experiments were conducted, which demonstrated that the proposed model achieved an efficiency > 90% with different aqueous ethanol solutions, while maintaining high heating uniformity compared with other heating models. Furthermore, the effects of the tube permittivity and porosity of the porous material on the heating efficiency were investigated to demonstrate the robustness of the proposed model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信